Двойственная природа микрочастиц модели атома Бора
| Категория реферата: Рефераты по математике
| Теги реферата: учреждения реферат, бесплатные рефераты на тему
| Добавил(а) на сайт: Janvarev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Концепция дополнительности Бора, — по словам Л. де Бройля, одна из наиболее оригинальных идей — вызвала много споров и дискуссий, которые не прекращаются и сейчас. По поводу дополнительности высказываются самые различные точки зрения и самые противоречивые оценки. Здесь налицо весь спектр мнений: от полного признания взглядов Бора до полного и категорического их отрицания. И это не случайно. Бор делил истины на две категории, о которых мы уже неоднократно говорили. Дополнительность относится, по его терминологии, к категории “глубоких истин”. Именно поэтому она и составила предмет горячих споров и долгих дискуссий, стала объектом обширнейших исследований. Как совершенно справедливо отметил С.В.Остапенко, квантовая механика поставила человека в ситуацию, когда вековая психологическая потребность в твердом и однозначном ответе на все вопросы явно вступила в противоречие с реальностью, о чем свидетельствует современный этап развития научного познания34.
Необходимо отметить, что и в рамках копенгагенской интерпретации квантовой механики по поводу идеи дополнительности существовали серьезные разночтения. Даже сторонники Бора не имели единого мнения относительно дополнительности. Образно говоря, копенгагенская интерпретация — это не единая позиция, а единый фронт взаимно дополнительных позиций. По мысли К.Вейцзеккера, эта интерпретация хотя и корректна и неизбежна, но никогда не была полностью ясна и сама нуждалась в интерпретации. Да и философская интерпретация дополнительности представляет собой проблему. И если Вейцзеккер пытался понять сущность дополнительности в свете философии Канта, то другие авторы трактовали ее с позиций прагматизма. Если П.Иордан смотрел на дополнительность через призму позитивизма, то Л.Розенфельд — ближайший сотрудник Бора — обращался к диалектическому материализму, а сам Бор вообще воздерживался от развернутой и однозначной философской оценки.
Разногласия относительно дополнительности в копенгагенской школе квантовой механики послужили одной из причин того, что идея дополнительности не получила полного признания. И в то же время М.Джеммер утверждал, что после 1927 г. в течение двух с половиной десятилетий эта идея стала единственной общепризнанной концепцией и осталась таковой до сих пор для большинства физиков35. Другой причиной отсутствия полного доверия к взглядам Бора было то, что идея дополнительности не может быть выведена непосредственно из квантовой механики. И это самый серьезный упрек в адрес данной идеи: действительно, из математического формализма квантовой механики она не выводится. Однако это не недостаток идеи дополнительности, а скорее ее достоинство. Именно поэтому дополнительность предстает перед нами как высшая форма качественного объяснения, и нет никакой необходимости искать указаний на то, какой математический формализм за нее ответствен. От качества нельзя требовать выводимости его из количества. Так, например, на основе понятия “вода” нельзя делать заключения, из какого количества воды складывается капля или море. Наконец, существенно и то, что, как отмечал П.Фейерабенд, идея дополнительности не представляет собой “последнее слово”. Естественно, в сегодняшнем своем виде она вообще не может быть “последним словом”, так как ничто не может претендовать на статус “абсолютной истины”. Однако согласно принципу соответствия, как бы ни изменялась в будущем идея дополнительности, взгляды Бора останутся в золотой сокровищнице человеческого познания.
Современные альтернативы концепции дополнительности, как считает В.П.Хютт, могут быть разделены на три группы: 1) математико-физические альтернативы, основанные на надежде так изменить уравнение Шредингера, чтобы стало возможным вывести “скрытые параметры” и тем самым узаконить классическую онтологию; 2) математико-логические альтернативы, в рамках которых формализм квантовой теории сохраняется, но пересматривается логика перехода от экспериментальных данных к физическому их толкованию таким образом, что будут опровергнуты фундаментальные методологические принципы дуализма, неопределенности и дополнительности; 3) критика методологических и философских оснований данной концепции, поскольку полный отказ от идеи дополнительности без критики и объяснения ее сущности не есть положительная разработка проблемы, тем более что в квантовой механике она является принципиально необходимой для интерпретации последней. Общим для всех этих альтернатив является стремление преодолеть идею дополнительности, утвердить онтологию классической физики, закрепить представления классической физики о микрообъектах как классических частицах, движущихся по строго определенным траекториям и подчиняющихся строгому лапласовскому детерминизму.
Что касается альтернатив первого типа, то вопреки стараниям приверженцев теории “скрытых параметров” она до сих пор не достигла каких-либо успехов. И, на наш взгляд, прежде всего потому, что подобные попытки, как и сама гипотеза “скрытых параметров”, по крайней мере в нынешних ее вариантах, не отвечают принципу простоты.
Характерным примером второго типа альтернатив являются идеи К.Поппера. Как было показано Фейерабендом, взгляды Поппера представляют собой некую смесь мыслей Бора, идей вероятностной логики, а также идеи “скрытых параметров”, поскольку Поппер приписывает частицам точные координаты в данный, точно определяемый (фиксируемый) момент времени. По мнению В.П.Хютта, концепция Поппера близка к теории квантовых ансамблей Д.И.Блохинцева, которую в свое время критиковал В.А.Фок.
К третьему типу альтернатив концепции дополнительности относят, например, критику, которую развивают М.Бунге и И.Лакатоши. Согласно Бунге, концепция дополнительности не является частью или разделом квантовой теории. Идея дополнительности, считает он, хотя и выглядит разумной в квантовой теории, когда люди мыслят с помощью классических образов, в наше время исчерпала свои потенции. Сегодня эта идея стала оправданием неясности и противоречий36. Но это еще не все: Бунге отрицает также всеобщий характер связи между массой и энергией, соотношение неопределенностей энергии-времени, существование виртуальных квантов. Но такая “философия физики”, которая позволяет отрицать основные законы природы, едва ли объективна, как на то претендует ее автор.
В историческом плане в обсуждении методологических и философских проблем квантовой теории, согласно А.Поликарову, отчетливо выделяются три основных этапа. Первый этап определяется становлением квантовой механики, которая предстает как контраверсия многим физическим и философским идеям. На этом этапе происходит интереснейшая и плодотворная дискуссия между Бором и Эйнштейном, выступавшим против дополнительности. Начало 50-х годов стало началом второго этапа, связанного с дискуссиями по фундаментальным проблемам квантовой теории. Линия Эйнштейна была продолжена в работах Д.Бома и Л. де Бройля, которые попытались реализовать идею “скрытых параметров” и вернуться назад, к классическим представлениям. Современный этап, начавшийся в середине 60-х годов, характеризуется тем, что вновь значительно повысился интерес к философским проблемам квантовой теории, и более всего — к проблемам причинности в частности и детерминизма в целом37.
Остановимся кратко на основных контраверсиях. Эйнштейн полагал, что хотя квантовая теория удовлетворительно объединяет описание корпускулярных и квантовых свойств материи, но принципиально неудовлетворительно в ней отношение к тому, что, с его точки зрения, является “высшей целью всей физики: полному описанию реального состояния произвольной системы (существующего, по предположению, независимо от акта наблюдения или существования наблюдателя)”38. Такой классический идеал физической картины мира был единственно приемлемым для Эйнштейна, и поэтому объективно реальным ученый считал то, что относится к объектам. Иными словами, объективная реальность — это объектная реальность. А так как реальность не зависит от какого-то измерения или наблюдения, то все измерительные процедуры и условия наблюдения с этих позиций необходимо рассматривать как субъективные, поскольку они относятся к познанию объективной, т.е. объектной, реальности, но не к ней самой. Поэтому Эйнштейн считал, что нельзя согласиться с истинностью теоретического описания, если оно зависит от наблюдения, как того требует концепция дополнительности.
В качестве контраверсии такому классическому пониманию физической реальности, в соответствии с которым объективное значит объектное, Бор выдвигает свое “рациональное обобщение”, расширяющее понятие объективного. Согласно Бору, объективны не только объектное и не только характеристики исследуемого объекта — объективны также приемы исследования и характеристики приборов и измерительных процедур. Понятие объективного у Бора выходит за традиционные, классические рамки и включает представление о том, что относится к приборам и измерительным процедурам, т.е. о том, что с классических позиций считалось субъективным. Если в классической физике граница между субъективным и объективным была абсолютной, то в физике микромира она становится относительной. Диалектический путь познания как восхождение от абстрактного к конкретному в данном случае реализуется как отрицание абсолютной границы между субъективным и объективным и требует понимания ее относительности.
Само объективное существование кванта действия является причиной того, что “поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят явления”39. Эта невозможность установления твердых границ между объектом и прибором лишает смысла классическое представление об абсолютно фиксированном различии между прибором и объектом. Противопоставление объекта и прибора оказалось не абсолютным, а сами они — не независимыми друг от друга, причем их взаимозависимость, как выяснилось, определяется экспериментальными условиями. Но поскольку в соответствии с классической позицией то, что относится к прибору, субъективно, постольку допущение относительности границы между прибором и объектом приводит, если следовать за Эйнштейном, к отказу от изучения природы как объективной реальности. Именно такие различные трактовки объективного и субъективного в физическом познании стали основой полемики между Бором и Эйнштейном.
В свете сказанного изложенная выше позиция М.Бунге, суть которой заключается в отрицании дополнительности, обусловлена, видимо, тем, что этот исследователь стоит на классических позициях в интерпретации объективности физического познания. Поскольку для Бунге объективное означает относящееся и принадлежащее к объекту, постольку квантовая механика, по его мнению, имеет дело не с наблюдаемыми реальными объектами, а с экспериментальными приборами. И поэтому ученый считает, что дополнительность ведет к отказу от объективности.
Попытки Бора применить идею дополнительности вне рамок физики, в других областях знания, были встречены по-разному. Большинство его сотрудников признавали универсальный характер дополнительности. Согласно Л.Розенфельду, принцип дополнительности необходим, так как обеспечивает возможность широкого описания фундаментальных закономерностей природы, которые не могут быть охвачены единственной картиной. Но, подчеркивал Розенфельд, все попытки построить систему философии по Бору противоречат его собственным установкам, потому что философия Бора ориентирована на сведение всех законов природы к небольшому числу принципов. Характерно, что Бор даже избегал слова “принцип”.
В.Гейзенберг также отстаивал мысль, что дополнительность имеет универсальный характер. И в контексте развития физики, полагал он, эта идея пробуждает надежды на то, что “в окончательном состоянии различные культурные традиции, новые и старые, будут сосуществовать, что весьма разнородные человеческие устремления могут быть соединены для того, чтобы образовать новое равновесие между мыслями и действием, между созерцательностью и активностью”41. М.Борн считал, что идея дополнительности имеет всеобщее значение, потому что существует много областей человеческой деятельности, где один и тот же факт можно рассматривать в различных, но взаимодополняющих аспектах42. Он был согласен с Бором в том, что представление о дополнительности можно применить в других областях знания, в частности в биологии, психологии, философии, политике, и заявлял, что не следует отказываться от такого обогащения нашего мышления43. В.Паули также полагал, что представление о дополнительности выходит за рамки физики. Его философское значение состоит в том, что оно, выступая против односторонности, “могло бы стать первым шагом на пути прогресса к единой общей картине мира, в которой естественные науки составляют лишь часть”44.
Фундаментальный факт квантовой физики — корпускулярно-волновой дуализм — показывает, что к микрообъекту невозможно применять классические способы описания. Но вместе с тем стало ясно, что объективное описание микромира невозможно и на пути полного отказа от классических способов описания, так как описание микромира требует наложения некоторых ограничений. Таким ограничением является принцип неопределенностей Гейзенберга, не допускающий при описании микроявлений одновременной абсолютно точной локализации в координатном и импульсном пространстве, как и одновременного абсолютно точного фиксирования энергии и времени.
Классический способ описания с его допущениями — абсолютизацией и детализацией — применим для описания микроявлений в тех случаях, когда можно не учитывать постоянную Планка. Фактически именно эта фундаментальная величина и есть пограничный пункт между квантовым и классическим описанием.
Квантовый способ описания явлений позволяет предвидеть конкретные реальные возможности акта измерения. Обращая внимание на условия, в которых происходит измерение, исследователь также может предсказать устройство и действие приборов, определяющих эти условия. Поэтому нет необходимости приписывать микрообъекту такие свойства и состояния, которые принципиально не могут быть установлены, на что фактически нацелена гипотеза “скрытых параметров”.
Измерительные устройства и внешние условия эксперимента описываются классическим способом через задание их характеристических параметров. Квантовый микрообъект проявляется при взаимодействии с классическим прибором. Результат такого взаимодействия — экспериментальные данные, которые объясняются на основе тех или иных теоретических предпосылок и на базе которых, в свою очередь, делаются косвенные заключения о свойствах объекта, уже предсказанных теорией. И так как свойства микрообъекта обнаруживаются через взаимодействие его с классическим прибором, то их проявление обусловливается устройством прибора и создаваемыми внешними условиями. Какая сторона объекта — корпускулярная или волновая — проявится, зависит от прибора. Изучение корпускулярных и волновых свойств всех микрообъектов требует несовместимых внешних условий, необходимых для различных классических приборов. А это означает, что становится невозможным изучать одновременно различные свойства и различные стороны микрообъекта, детализация же поведения микрообъекта становится принципиально невозможной.
Именно эти свойства, проявляющиеся при взаимоисключающих условиях, Бор назвал дополнительными. Поэтому согласно В.А.Фоку, одновременное рассмотрение взаимно противоположных дополнительных свойств лишено смысла, а сама идея корпускулярно-волнового дуализма непротиворечива. Боровский принцип дополнительности — утверждение что корпускулярные и волновые аспекты находятся в дополнительном отношении, — относится не только к наблюдению и поэтому является не только гносеологическим принципом. В.А.Фок считает, что этот принцип отражает объективные свойства природы и потому он есть закон природы. И поскольку в основе квантового способа описания природы лежат результаты взаимодействия микрообъекта с макроприбором, как раз необходимо ввести представление об относительности к средствам наблюдения, которое является обобщением идеи относительности. Такое обобщение представления об относительности, утверждает В.А.Фок, отнюдь не означает что микрообъект менее реален, чем классический прибор. Совсем наоборот: представление об относительности к средствам наблюдения позволяет глубже и точнее характеризовать явления в микромире.
Следует указать также на то, что квантовый способ описания как более конкретный и совершенный требует соответствующего математического аппарата, применение которого в свою очередь, ведет к выявлению новых фундаментальных свойств материи. Толкование понятий, используемых в квантовой теории, диктует необходимость обобщения понятия состояния системы на основе понятий вероятности и потенциальной возможности. Понятие вероятности в квантовой механике вовсе не говорит о некоторой неполноте нашего знания о микромире, а наоборот, являясь существенным элементом квантово-механического описания, дает возможность уточнить само представление о полноте описание. Понятие вероятности существенно необходимо, поскольку для данных внешних условий результаты взаимодействия объекта и прибора не предопределены однозначно, а характеризуются некоторым вероятностным распределением. Это вероятностное распределение результатов взаимодействия отражает потенциальные возможности, которые объективно существуют при определенных условиях.
При квантовом описании следует иметь в виду, что, изучая взаимодействие между прибором и объектом, мы можем применять приборы различных типов. Использовать такие приборы одновременно невозможно, и это также говорит о различных потенциальных возможностях. Кроме того, существуют различные потенциальные возможности реагирования объекта на включение того или иного прибора в процессе измерения квантовой величины. При таком положении дел теория не может не быть принципиально вероятностной. Эта вероятность — не следствие неполноты теории, как считал Эйнштейн, не недостаток ее, а достоинство. Существующие потенциальные возможности обеспечивают полное описание поведения и состояния микрообъекта, и математическая форма законов квантовой механики адекватно отражает эти потенциальные возможности. Вероятностное распределение результатов измерения можно вычислить через волновую функцию как квадрат ее модуля. И поскольку квантовое описание исчерпывает все потенциальные возможности, постольку его необходимо считать полным. Сама природа такова, что теория не может отражать ничего, кроме того, что проявляется в совокупности потенциальных возможностей. Хотя, надо отметить, что и такое толкование квантовой механики с обыденных позиций кажется в лучшем случае маловразумительным.
Так или иначе, дискуссия относительно полноты квантовой теории, по мнению В.А.Фока, этим исчерпывается, поскольку введение представления о потенциальной возможности, как он считает, снимает все проблемы, дает ответы на поставленные еще Эйнштейном вопросы. Таков результат обобщения принципа относительности на квантовую механику. Но в этом случае новое освещение получает принцип дополнительности, конкретизируясь в контексте относительности к средствам наблюдения.
Новый вид относительности, отличный от классической эйнштейновской относительности, можно назвать квантово-механической относительностью. При этом необходимо отметить, что квантово-механическая относительность неоднозначна и ее можно трактовать не только как относительность к измерительному прибору. Так, Ю.М.Ломсадзе предпринял попытку истолковать ее шире, распространив на отношение к субъекту47. Д.И.Блохинцев рассматривает квантово-механическую относительность как независимую от присутствия наблюдателя и процесса наблюдения по отношению к макроскопической обстановке48. Возможна и другая интерпретация этого вида относительности: как относительности к виду и типу физического взаимодействия, что отстаивает Б.Я.Пахомов49.
Особый интерес вызывает соотношение дополнительности и относительности в контексте информационной интерпретации последней. В этом случае относительность рассматривается в связи с информационными условиями, в которых находится наблюдатель. В соответствии с “трехэлементной” концепцией, развиваемой П.С.Дышлевым50, информационные условия относятся к условиям познания. Взгляды П.С.Дышлевого представляют собой конкретизацию гносеологического тезиса о взаимодействии между субъектом и объектом познания. Согласно этому тезису, в методологии физики взаимная связь между субъектом и объектом познания принимает следующий вид: физический объект — условия познания — наблюдатель.
Как известно, объекты познания в классической физике и квантовой физике существенно отличаются друг от друга, при этом в квантовой теории в силу специфики ее объекта невозможно пренебрегать взаимодействием между объектом и исследовательским средством. Наблюдатель получает информацию не только о физическом объекте как таковом, но одновременно и о влиянии наблюдательного средства на этот объект в процессе измерения. Столь значительная роль субъекта в квантовой физике предполагает, что наряду с представлением о наблюдателе необходимо ввести еще и представление об условиях познания как новом элементе познавательного отношения. Но повышение роли субъекта в процессе познания микромира не означает субъективизации физического познания, поскольку субъект непосредственно не вносит никаких существенных возмущений в исследуемую физическую систему, а его воздействие на процесс исследования заключается в выборе определенной исходной материальной системы (системы отсчета), в усовершенствовании экспериментального прибора, в подготовке и реализации физического опыта. Повышение роли субъекта имеет место в теоретической части квантовой физики: здесь это касается формулирования и обоснования новых физических идей и теорий, создания новой физической картины мира.
Рекомендуем скачать другие рефераты по теме: мировая экономика, инновационный менеджмент.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата