Физическое состояние вещества геосфер
| Категория реферата: Рефераты по математике
| Теги реферата: бесплатные дипломные работы скачать, земля реферат
| Добавил(а) на сайт: Belonogov.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
для внешнего («жидкого») ядра (верхний предел h):
c. (II.16)
Таким образом, учитывая, что 1 год = 107 с, имеем период релаксации для земной сферы в целом 10 лет, для литосферы – 10 тыс. лет, для астеносферы – 1 тыс. лет, для нижней мантии – 100 тыс. лет и для внешнего ядра – от бесконечности до 1 с. Из приведенного видно, что для нижней мантии величина h, очевидно, сильно занижена, вероятнее всего (см. далее), t здесь измеряется многими миллионами, если не сотнями миллионов лет. Сравнивая h в среднем для Земли и h для ядра, можно заключить, что приведенные предельные значения t для ядра нереальны. Первое (t = ¥ ) соответствует абсолютно твердому телу, второе (t = 1 с) – ньютоновской жидкости, мгновенно реагирующей на приложенное напряжение. Как мы видели выше, ни то ни другое в ядре не наблюдается. Скорее всего реальное значение h надо искать где-то посредине между 109 и бесконечностью, чтобы полученная величина была близка к 107 с. Возможны значения h = 101 – 102 пуаз. Но в этом случае нам придется объяснить причину непрохождения через внешнее ядро поперечных волн нежидким его состоянием. В свете современной теории поведения высокопроводящей плазмы в магнитном поле такое объяснить возможно. Об этом мы будем говорить при рассмотрении проблемы генерации геомагнитного поля.
Важнейший вывод, который следует из сравнения параметров жесткости и вязкости Земли, заключается в том, что верхние оболочки и внешнее ядро сферы в масштабе десятков тысяч лет можно рассматривать как пластичное тело. Для существенно меньших интервалов времени это упругая среда, подчиняющаяся закону Гука. В этом заключается фундаментальная физическая особенность Земли как планетного тела, из которой вытекают важные геофизические и тектонические следствия в приложении к перисфере Земли. В частности, меньшая по сравнению с литосферой вязкость астеносферного слоя (волновод Гутенберга) подтверждается тем, что 97% всех зарегистрированных землетрясений имеют очаги не глубже 30 – 50 км (Гутенберг, 1963). Глубокие же землетрясения (300 – 720 км), выходящие за пределы волновода, имеют ограниченное распространение и приурочены главным образом к узким линейным зонам континентальной окраины и островных дуг, где, вероятно, физические условия состояния вещества волновода нарушены (Ботт, 1974). Иными словами, столь характерная сейсмичность перисферы обусловлена малым периодом релаксации подстилающего ее материала, отчего возникающие здесь напряжения успевают рассасываться без разрыва сплошности пород. Поскольку интервал времени между главными циклами тектонегенеза составляет примерно 100 млн. лет (Штилле, 1964), то для того, чтобы удовлетворить этому порядку в выражении (II.45) для нижней мантии, мы должны принять h = 1027 пуаз, тогда t будет равно 1015 с, или 108 лет.
Таким образом, верхний предел вязкости нижней мантии будет оцениваться величиной h = 1027 пуаз. Эта величина больше соответствует физическим параметрам нижней мантии и общему, как мы увидим далее, инертному ее состоянию.
Термодинамическое состояние недр. Давление и температура внутри Земли представляют для нас наибольший интерес. Эти параметры, будучи независимыми, в свою очередь, контролируются массой тел; в данном случае массой Земли. Это следует из формул теории гравитационного потенциала (см. гл. II, § 3):
; ; .
Формулы действительны в предположении однородной Земли со средней плотностью r = 5,52 г/см3. В таком случае давление нарастает с глубиной по квадратичному закону:
, где атм.
Оно изменяется от 0 на поверхности до 1,73×106 атм. в центре планеты. Однако в реальной модели, вследствие концентрации массы к центру Земли, значение g уменьшается медленней. Поэтому давление будет здесь выше теоретического значения почти в два раза 3,6×106 атм. (Жарков, 1978). Для более точных расчетов используются данные сейсмологии об изменении скоростей продольных Vр и поперечных Vs волн внутри Земли и вычисляют параметр Ф:
, (II.17)
где К – модуль сжатия. Используя параметр Ф, можно определить изменение Dr с глубиной:. Поскольку , исходя из обоих выражений DР, получим уравнение для определения приращения плотности с глубиной внутри Земли: . Полученное выражение тождественно уравнению Адамса-Вильямсона (II.17). Теперь, зная распределение плотности Dr, можно найти закон изменения давления Р = Р(r). Поскольку сила тяжести g определяется выражением , то становится ясно, что давление функционально связано с массой планетного тела. Чем больше эта масса, тем более высокое давление будет развиваться в ее недрах.
Как эти параметры связаны с температурой? Напомним физический смысл температуры. Это скорость и амплитуда колебания атомов или ионов относительно своего состояния равновесия. Чем выше энергия колебаний, тем выше температура. Состояние покоя атомами и ионами достигается при абсолютном нуле Кельвина (-273,16°С). Вывод из состояния равновесия осуществляется за счет изменения давления и собственного объема тела. Уравнение состояния оценивается выражением Р = Р(V,T). Таким образом, внутренняя энергия тела определяется потенциальной энергией его атомно-молекулярной решетки Uп и кинетической энергией теплового движения атомов или ионов возле состояния равновесия Uк: Е = Uп + Uк. Величина Uп зависит от объема V и давления Р; Uк – от давления Р, объема V и температуры Т:
Е(V,T) = Uп(V) + Uк(V,T). В соответствии с этим выражением и давление Р также состоит из потенциальной части Рп, зависящей от объема V и, следовательно, от массы М космического тела, т.е. V = M/r и кинетической части Рк, характеризующей тепловое движение: P = Pn(V)+
+ Pk(V,T). Уравнение состояния имеет вид:
,
где R = 8,3114×107 эрг/град×моль – газовая постоянная; Т – абсолютная температура Кельвина; А – средний атомный вес; g(r) – параметр Грюнайзена (функция плотности).
Вклад теплового давления, возникающего из-за тепловых колебаний атомов, в полное давление в условиях планетных недр не превышает 10 – 20% (Жарков, 1978). Поэтому закон изменения давления в недрах планет в основном определяется первым слагаемым уравнения состояния Р(r, 0), называемым нулевой изотермой. По приведенной ниже табл. II.4 можно получить представление об изменении плотности в зависимости от давления для различных космохимических элементов и соединений.
Таблица II.4
Плотность в зависимости от давления в атм. для космохимических элементов и соединений, г/см3
Р, бар |
Н2 |
Н2О |
SiO2 (стишовит) |
Аl2O3 Рекомендуем скачать другие рефераты по теме: рефератов, контрольная по русскому языку. Категории:Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |