Графы. Решение практических задач с использованием графов (С++)
| Категория реферата: Рефераты по математике
| Теги реферата: реферат бесплатно без регистрации, оформление доклада титульный лист
| Добавил(а) на сайт: Janborisov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Паросочетание называется максимальным, если никакое его надмножество не является независимым.
Две вершины в графе связаны, если существует соединяющая их простая цепь.
Граф, в котором все вершины связаны, называется связным.
Граф, состоящий только из изолированных вершин, называется вполне несвязным.
Длиной маршрута называется количество ребер в нем (с повторениями).
Расстоянием между вершинами u и v называется длина кратчайшей цепи , а сама кратчайшая цепь называется геодезической.
Диаметром графа G называется длина длиннейшей геодезической.
Эксцентриситетом вершины v в связном графе G(V,E) называется максимальное расстояние от вершины v до других вершин графа G.
Радиусом графа G называется наименьший из эксцентриситетов вершин.
Вершина v называется центральной, если ее эксцентриситет совпадает с радиусом графа.
Множество центральных вершин называется центром графа.
рис. 5 Эксцентриситеты вершин и центры графов (выделены).
Основные теоремы теории графов
Опираясь на приведенные выше определения теории графов, приведем формулировки и доказательства теорем, которые затем найдут свои приложения при решении задач.
Теорема 1. Удвоенная сумма степеней вершин любого графа равна числу его ребер.
Доказательство. Пусть А1, А2, А3, ..., An — вершины данного графа, a p(A1), p(А2), ..., p(An) – степени этих вершин. Подсчитаем число ребер, сходящихся в каждой вершине, и просуммируем эти числа. Это равносильно нахождению суммы степеней всех вершин. При таком подсчете каждое ребро будет учтено дважды (оно ведь всегда соединяет две вершины).
Отсюда следует: p(A1)+p(А2)+ ... +p(An)=0,5N, или 2(p(A1)+p(А2)+ ... +p(An))=N , где N — число ребер.
Теорема 2. Число нечетных вершин любого графа четно.
Доказательство. Пусть a1, a2, a3, …, ak — это степени четных вершин графа, а b1, b2, b3, …, bm — степени нечетных вершин графа. Сумма a1+a2+a3+…+ak+b1+b2+b3+…+bm ровно в два раза превышает число ребер графа. Сумма a1+a2+a3+…+ak четная (как сумма четных чисел), тогда сумма b1+b2+b3+…+bm должна быть четной. Это возможно лишь в том случае, если m — четное, то есть четным является и число нечетных вершин графа. Что и требовалось доказать.
Эта теорема имеет немало любопытных следствий.
Следствие 1. Нечетное число знакомых в любой компании всегда четно.
Следствие 2. Число вершин многогранника, в которых сходится нечетное число ребер, четно.
Следствие 3. Число всех людей, когда-либо пожавших руку другим людям, нечетное число раз, является четным.
Теорема 3. Во всяком графе с n вершинами, где n больше или равно 2, всегда найдутся две или более вершины с одинаковыми степенями.
Рекомендуем скачать другие рефераты по теме: курсовая работа по экономике, сочинения по литературе.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата