Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

Проблемы, связанные с индексными числами.

Искажения, возникающие при использовании индексных чисел, могут быть вызваны следующими факторами:

1. Ограниченность данных. Иногда довольно трудно найти подходящие данные для вычисления индекса. Например, коммерческий директор небольшой авиастроительной компании хотел бы подсчитать индекс, характеризующий сезонные различия в объеме продаж небольших самолетов. Если он располагает данными только по годовому объему продаж, то определить сезонные колебания будет невозможно.

2. Несравнимость индексов. Часто пытаются сравнивать один индекс с другим после того, как в технологии производства или в общей экономической ситуации произошли радикальные изменения. Если сравнивать цены на автомобили в 1979 г. и в 1989 г., то выяснится, что цены в значительной степени выросли. Однако, это сравнение не учитывает технологического прогресса в автомобилестроении за эти 10 лет.

3. Неправильно выбранный вес так же могут привести к искажениям индекса. В процессе подсчета сводного индекса необходимо учитывать, что изменения одних переменных могут быть важнее, чем изменения других. Влияние на экономику 50-ти центового увеличения в цене за один галлон бензина не может быть компенсировано уменьшением цен на автомобили на те же 50 центов. Очевидно, что увеличение цены одного галлона на 50 центов имеет гораздо большее влияние на потребителя. Следовательно, большой вес должен быть присвоен возросшей цене на горючее, чем снижению цен на автомобили.

4. Искажение индекса может являться результатом неправильно выбранной базы. Иногда фирма выбирает такую базу, которая автоматически приводит к результату, отражающему интерес самой фирмы. Предположим, что общество по борьбе с чрезмерным расходом нефти хочет выставить нефтеперерабатывающие компании в плохом свете. Оно может измерять доходы текущего года, приняв в качестве базы какой-либо убыточный год. Тогда, несомненно, индекс отразит значительное увеличение доходов компании. С другой стороны, общество, выступающее за неограниченное потребление нефти, хотело бы показать, что в текущем году доходы от продажи нефти были минимальными. Тогда для базы можно выбрать год с весьма высокой прибылью. В результате, индекс покажет незначительное увеличение или даже сокращение доходов от продажи нефти. Следовательно, особое внимание должно уделяться тому, как и почему был выбран данный базовый период, и лишь затем делать выводы на основе сравнения индексных чисел.

2. Невзвешенный агрегативный (совокупный) индекс.

Самой простой формой сводного составного индекса является невзвешенный агрегативный индекс. Невзвешенный означает, что все значения, рассматриваемые в процессе подсчета индекса, входят с одинаковым весом. Агрегативный (совокупный) означает, что мы суммируем все значения. Главное преимущество этого индекса - его простота.

Подсчет невзвешенного совокупного индекса. Невзвешенный совокупный индекс вычисляется сложением всех элементов для данного временного периода с последующим делением результата на сумму этих же элементов для базового периода. Формула для подсчета невзвешенного совокупного индекса (НСИ):

НСИ=Claw.ru | Рефераты по математике | Индексные числа*100(2.1) где

P0- количество каждого элемента для базового года;

P1 - количество каждого элемента для текущего года.

Заметим, что в качестве P0 и P1 мы можем подставлять в эту формулу цены или стоимости для нахождения соответственно ценового или стоимостного индексов. Хотя индексы и выражены в виде процента, обычно используются только их значения и опускается знак процента при обработке индексных чисел.

Применение невзвешенного индекса.

В табл.2.4 показано вычисление этого индекса. В данном примере мы определяем изменения в общем уровне цен на основе изменений цен на несколько наименований товаров. Цены 1984 г. являются базовыми значениями, которые сравниваются с ценами 1989г.

Таблица 2.4 Подсчет невзвешенного индекса

Элементы совокупного

Цены ( долл.)

индекса

1984 г (P0)

1989 г. (P1)

Молоко (1 галлон)

Яйца (1 дюжина)

Гамбургер (1 фунт)

Бензин (1 галлон)

1.92

0.81

1.49

1.00

3.40


Рекомендуем скачать другие рефераты по теме: курсовые работы бесплатно, мир докладов.


Категории:




Предыдущая страница реферата | 1  2  3  4  5  6  7  8  9  10  11 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •