Интеграл по комплексной переменной
| Категория реферата: Рефераты по математике
| Теги реферата: реферат диагностика, варианты ответов
| Добавил(а) на сайт: Абдурахимов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Интеграл по комплексной переменной.
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной переменной t. Пусть a t i.
Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1)
где z*– производная точки этой дуги.
Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С.
(2)
f (zi* ) = u (Pi*) + iv (Pi*) (3)
где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа)
Подставив (3) в (1) получим :
(4)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :
(5)
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (z ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
О ограниченности интеграла.
При этом z = j (z ).
7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p, dz = ir×eij dj .
Кусочно-гладкую замкнутую кривую будем называть
замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
Рекомендуем скачать другие рефераты по теме: семья реферат, диплом купить.
Категории:
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата