Интеграл по комплексной переменной
| Категория реферата: Рефераты по математике
| Теги реферата: реферат диагностика, варианты ответов
| Добавил(а) на сайт: Абдурахимов.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Очевидно, что (6’)
Функция (6) называется спектральной плотностью
В связи с изложенным можно указать два пути отыскания спектральной плотности :
1) Вычисление интеграла (5)
2) Использование преобразования Лапласа или Фурье.
Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.
Функция F(iu) может быть представлена, как комплексная функция действительной переменной
(7)
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)
(8)
(9)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол y (u).
Пример.
Найти спектральную плотность импульса :
откуда , далее
Отыскание спектральной плотности для неабсолютно интегрируемых функций.
Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Рекомендуем скачать другие рефераты по теме: семья реферат, диплом купить.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата