История математики
| Категория реферата: Рефераты по математике
| Теги реферата: банк рефератов и курсовых, культура реферат
| Добавил(а) на сайт: Trifena.
Предыдущая страница реферата | 1 2 3
Метод Ньютона – Лейбница начинается с замены кривой, ограничивающей площадь, которую требуется определить, приближающейся к ней последовательностью ломаных, аналогично тому, как это делалось в изобретенном греками методе исчерпывания. Точная площадь равна пределу суммы площадей n прямоугольников, когда n обращается в бесконечность. Ньютон показал, что этот предел можно найти, обращая процесс нахождения скорости изменения функции. Операция, обратная дифференцированию, называется интегрированием. Утверждение о том, что суммирование можно осуществить, обращая дифференцирование, называется основной теоремой математического анализа. Подобно тому, как дифференцирование применимо к гораздо более широкому классу задач, чем поиск скоростей и ускорений, интегрирование применимо к любой задаче, связанной с суммированием, например, к физическим задачам на сложение сил.
4. Современная математика
Создание дифференциального и интегрального исчислений ознаменовало начало «высшей математики». Методы математического анализа, в отличие от понятия предела, лежащего в его основе, выглядели ясными и понятными. Многие годы математики, в том числе Ньютон и Лейбниц, тщетно пытались дать точное определение понятию предела. И все же, несмотря на многочисленные сомнения в обоснованности математического анализа, он находил все более широкое применение. Дифференциальное и интегральное исчисления стали краеугольными камнями математического анализа, который со временем включил в себя и такие предметы, как теория дифференциальных уравнений, обыкновенных и с частными производными, бесконечные ряды, вариационное исчисление, дифференциальная геометрия и многое другое. Строгое определение предела удалось получить лишь в 19 в.
Неевклидова геометрия. К 1800 математика покоилась на двух «китах» – на числовой системе и евклидовой геометрии. Так как многие свойства числовой системы доказывались геометрически, евклидова геометрия была наиболее надежной частью здания математики. Тем не менее аксиома о параллельных содержала утверждение о прямых, простирающихся в бесконечность, которое не могло быть подтверждено опытом. Даже версия этой аксиомы, принадлежащая самому Евклиду, вовсе не утверждает, что какие-то прямые не пересекутся. В ней скорее формулируется условие, при котором они пересекутся в некоторой конечной точке. Столетиями математики пытались найти аксиоме о параллельных соответствующую подходящую замену. Но в каждом варианте непременно оказывался какой-нибудь пробел. Честь создания неевклидовой геометрии выпала Н.И.Лобачевскому (1792–1856) и Я.Бойяи (1802–1860), каждый из которых независимо опубликовал свое собственное оригинальное изложение неевклидовой геометрии. В их геометриях через данную точку можно было провести бесконечно много параллельных прямых. В геометрии Б.Римана (1826–1866) через точку вне прямой нельзя провести ни одной параллельной.
О физических приложениях неевклидовой геометрии никто серьезно не помышлял. Создание А.Эйнштейном (1879–1955) общей теории относительности в 1915 пробудило научный мир к осознанию реальности неевклидовой геометрии.
Неевклидова геометрия стала наиболее впечатляющим интеллектуальным свершением 19 в. Она ясно продемонстрировала, что математику нельзя более рассматривать как свод непререкаемых истин. В лучшем случае математика может гарантировать достоверность доказательства на основе недостоверных аксиом. Но зато математики впредь обрели свободу исследовать любые идеи, которые могли показаться им привлекательными. Каждый математик в отдельности был теперь волен вводить свои собственные новые понятия и устанавливать аксиомы по своему усмотрению, следя лишь за тем, чтобы проистекающие из аксиом теоремы не противоречили друг другу. Грандиозное расширение круга математических исследований в конце прошлого века по существу явилось следствием этой новой свободы.
Математическая строгость. Примерно до 1870 математики пребывали в убеждении, что действуют по предначертаниям древних греков, применяя дедуктивные рассуждения к математическим аксиомам, тем самым обеспечивая своими заключениями не меньшую надежность, чем та, которой обладали аксиомы. Неевклидова геометрия и кватернионы (алгебра, в которой не выполняется свойство коммутативности) заставили математиков осознать, что то, что они принимали за абстрактные и логически непротиворечивые утверждения, в действительности зиждется на эмпирическом и прагматическом базисе.
Создание неевклидовой геометрии сопровождалось также осознанием существования в евклидовой геометрии логических пробелов. Одним из недостатков евклидовых Начал было использование допущений, не сформулированных в явном виде. По-видимому, Евклид не подвергал сомнению те свойства, которыми обладали его геометрические фигуры, но эти свойства не были включены в его аксиомы. Кроме того, доказывая подобие двух треугольников, Евклид воспользовался наложением одного треугольника на другой, неявно предполагая, что при движении свойства фигур не изменяются. Но кроме таких логических пробелов, в Началах оказалось и несколько ошибочных доказательств.
Создание новых алгебр, начавшееся с квартернионов, породило аналогичные сомнения и в отношении логической обоснованности арифметики и алгебры обычной числовой системы. Все ранее известные математикам числа обладали свойством коммутативности, т.е. ab = ba. Кватернионы, совершившие переворот в традиционных представлениях о числах, были открыты в 1843 У.Гамильтоном (1805–1865). Они оказались полезными для решения целого ряда физических и геометрических проблем, хотя для кватернионов не выполнялось свойство коммутативности. Квартернионы вынудили математиков осознать, что если не считать посвященной целым числам и далекой от совершенства части евклидовых Начал, арифметика и алгебра не имеют собственной аксиоматической основы. Математики свободно обращались с отрицательными и комплексными числами и производили алгебраические операции, руководствуясь лишь тем, что они успешно работают. Логическая строгость уступила место демонстрации практической пользы введения сомнительных понятий и процедур.
Почти с самого зарождения математического анализа неоднократно предпринимались попытки подвести под него строгие основания. Математический анализ ввел два новых сложных понятия – производная и определенный интеграл. Над этими понятиями бились Ньютон и Лейбниц, а также математики последующих поколений, превратившие дифференциальное и интегральное исчисления в математический анализ. Однако, несмотря на все усилия, в понятиях предела, непрерывности и дифференцируемости оставалось много неясного. Кроме того, выяснилось, что свойства алгебраических функций нельзя перенести на все другие функции. Почти все математики 18 в. и начала 19 в. предпринимали усилия, чтобы найти строгую основу для математического анализа, и все они потерпели неудачу. Наконец, в 1821, О.Коши (1789–1857), используя понятие числа, подвел строгую базу под весь математический анализ. Однако позднее математики обнаружили у Коши логические пробелы. Желаемая строгость была наконец достигнута в 1859 К.Вейерштрассом (1815–1897).
Вейерштрасс вначале считал свойства действительных и комплексных чисел самоочевидными. Позднее он, как и Г.Кантор (1845–1918) и Р.Дедекинд (1831–1916), осознал необходимость построения теории иррациональных чисел. Они дали корректное определение иррациональных чисел и установили их свойства, однако свойства рациональных чисел по-прежнему считали самоочевидными. Наконец, логическая структура теории действительных и комплексных чисел приобрела свой законченный вид в работах Дедекинда и Дж.Пеано (1858–1932). Создание оснований числовой системы позволило также решить проблемы обоснования алгебры.
Задача усиления строгости формулировок евклидовой геометрии была сравнительно простой и сводилась к перечислению определяемых терминов, уточнению определений, введению недостающих аксиом и восполнению пробелов в доказательствах. Эту задачу выполнил в 1899 Д.Гильберт (1862–1943). Почти в то же время были заложены и основы других геометрий. Гильберт сформулировал концепцию формальной аксиоматики. Одна из особенностей предложенного им подхода – трактовка неопределяемых терминов: под ними можно подразумевать любые объекты, удовлетворяющие аксиомам. Следствием этой особенности явилась возрастающая абстрактность современной математики. Евклидова и неевклидова геометрии описывают физическое пространство. Но в топологии, являющейся обобщением геометрии, неопределяемый термин «точка» может быть свободен от геометрических ассоциаций. Для тополога точкой может быть функция или последовательность чисел, равно как и что-нибудь другое. Абстрактное пространство представляет собой множество таких «точек»
Аксиоматический метод Гильберта вошел почти во все разделы математики 20 в. Однако вскоре стало ясно, что этому методу присущи определенные ограничения. В 1880-х Кантор попытался систематически классифицировать бесконечные множества (например, множество всех рациональных чисел, множество действительных чисел и т.д.) путем их сравнительной количественной оценки, приписывая им т.н. трансфинитные числа. При этом он обнаружил в теории множеств противоречия. Таким образом, к началу 20 в. математикам пришлось иметь дело с проблемой их разрешения, а также с другими проблемами оснований их науки, такими, как неявное использование т.н. аксиомы выбора. И все же ничто не могло сравниться с разрушительным воздействием теоремы неполноты К.Гёделя (1906–1978). Эта теорема утверждает, что любая непротиворечивая формальная система, достаточно богатая, чтобы содержать теорию чисел, обязательно содержит неразрешимое предложение, т.е. утверждение, которое невозможно ни доказать, ни опровергнуть в ее рамках. Теперь общепризнано, что абсолютного доказательства в математике не существует. Относительно того, что такое доказательство, мнения расходятся. Однако большинство математиков склонно полагать, что проблемы оснований математики являются философскими. И действительно, ни одна теорема не изменилась вследствие вновь найденных логически строгих структур; это показывает, что в основе математики лежит не логика, а здравая интуиция.
Заключение
Если математику, известную до 1600, можно охарактеризовать как элементарную, то по сравнению с тем, что было создано позднее, эта элементарная математика бесконечно мала. Расширились старые области и появились новые, как чистые, так и прикладные отрасли математических знаний. Выходят около 500 математических журналов. Огромное количество публикуемых результатов не позволяет даже специалисту ознакомиться со всем, что происходит в той области, в которой он работает, не говоря уже о том, что многие результаты доступны пониманию только специалиста узкого профиля. Ни один математик сегодня не может надеяться знать больше того, что происходит в очень маленьком уголке науки.
Список литературы
1. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2000 2. Юшкевич А.П. История математики в средние века. М., 2002 3. Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 2001 4. Клейн Ф. Лекции о развитии математики в XIX столетии. М., 2000
Скачали данный реферат: Гарин, Kaluf, Krenov, Салтанов, Nemcev, Петраков.
Последние просмотренные рефераты на тему: сочинение, шпоры бесплатно, изложение по русскому 6 класс, куплю диплом купить.
Категории:
Предыдущая страница реферата | 1 2 3