Метод Монте-Карло и его применение
| Категория реферата: Рефераты по математике
| Теги реферата: дипломы бесплатно, рефераты дипломы курсовые
| Добавил(а) на сайт: Jevelina.
Предыдущая страница реферата | 1 2
.
Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину Х, как найти её возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*.
§2. Оценка погрешности метода Монте-Карло.
Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки: . Ясно, что если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы d допускаемой ошибки с заданной вероятностью (надёжностью) g: .
Интересующая нас верхняя грань ошибки d есть не что иное, как «точность оценки» математического ожидания по выборочной средней при помощи доверительных интервалов. Рассмотрим следующие три случая.
Случайная величина Х распределена нормально и её среднее квадратичное отклонение d известно.
В этом случае с надёжностью g верхняя граница ошибки
, (*)
где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.
Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.
В этом случае с надёжностью g верхняя граница ошибки
, (**)
где n – число испытаний; s – «исправленное» среднее квадратическое отклонение, находят по таблице приложения 3.
Случайная величина Х распределена по закону, отличному от нормального.
В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.
Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.
Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.
Глава 3. Вычисление интегралов методом Монте-Карло.
§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.
Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.
§2. Способ усреднения подынтегральной функции.
В качестве оценки определённого интеграла принимают
,
где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.
Дисперсия усредняемой функции равна
,
где , . Если точное значение дисперсии вычислить трудно или
невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n
Скачали данный реферат: Алексей, Илиодор, Debora, Шеин, Ткаченко, Цой.
Последние просмотренные рефераты на тему: информационные рефераты, банк курсовых работ, чужие сообщения, реферат отрасль.
Категории:
Предыдущая страница реферата | 1 2