Межзвездная среда и туманности
| Категория реферата: Рефераты по математике
| Теги реферата: мировая экономика, оформление доклада титульный лист
| Добавил(а) на сайт: Вьялицын.
1 2 3 | Следующая страница реферата
Межзвездная среда и туманности
Л.С.Кудашкина
Вселенная - это, по сути, почти пустое пространство. Звезды занимают лишь ничтожную его долю. Однако, везде присутствует газ, хотя и в очень малых количествах. Это в основном водород, легчайший химический элемент. Если "зачерпнуть" обычной чайной чашкой (объем около 200 см3) вещество из межзвездного пространства на расстоянии 1-2 световых лет от Солнца, то в ней окажется примерно 20 атомов водорода и 2 атома гелия. В таком же объеме в обычном атмосферном воздухе содержится атомов кислорода и азота 1022.
Все, что заполняет пространство между звездами внутри галактик, называется межзвездной средой. И основное, что составляет межзвездную среду - это межзвездный газ. Он довольно равномерно перемешан с межзвездной пылью и пронизывается межзвездными магнитными полями, космическими лучами и электромагнитным излучением.
Из межзвездного газа образуются звезды, которые на поздних стадиях эволюции вновь отдают часть своего вещества межзвездной среде. Некоторые из звезд, умирая, взрываются как Сверхновые, выбрасывая обратно в пространство значительную долю водорода, из которого они когда-то образовались. Но значительно важнее, что при таких взрывах выбрасывается большое количество тяжелых элементов, образовавшихся в недрах звезд в результате термоядерных реакций. И Земля и Солнце сконденсировались в межзвездном пространстве из газа, обогащенного таким путем углеродом, кислородом, железом и другими химическими элементами. Чтобы постичь закономерности такого цикла, нужно знать, каким образом новые поколения звезд последовательно конденсируются из межзвездного газа. Понять, как образуются звезды, - важная цель исследований межзвездного вещества.
200 лет назад астрономам стало ясно, что кроме планет, звезд и появляющихся изредка комет на небе наблюдаются и другие объекты. Эти объекты из-за их туманного вида были названы туманностями. Французский астроном Шарль Мессье (1730-1817) был вынужден создать каталог этих туманных объектов, чтобы избежать путаницы при поисках комет. Его каталог содержал 103 объекта и был опубликован в 1784 г. Теперь известно, что природа этих объектов, впервые объединенных в общую группу под названием "туманности", совершенно различна. Английский астроном Уильям Гершель (1738-1822), наблюдая все эти объекты, за семь лет открыл еще две тысячи новых туманностей. Он же выделил класс туманностей, которые с наблюдательной точки зрения казались ему отличными от остальных. Он назвал их "планетарными туманностями", поскольку они имели некоторое сходство с зеленоватыми дисками планет.
Таким образом, мы будем рассматривать следующие объекты:
межзвездный газ;
межзвездная пыль;
темные туманности;
светлые туманности (самосветящиеся и отражательные);
планетарные туманности.
Примерно через миллион лет после начала расширения Вселенная еще представляла собой относительно однородную смесь газа и излучения. Не было ни звезд, ни галактик. Звезды образовались несколько позже в результате сжатия газа под действием собственной гравитации. Такой процесс называют гравитационной неустойчивостью. Когда звезда коллапсирует под действием огромного собственного гравитационного притяжения, ее внутренние слои непрерывно сжимаются. Это сжатие ведет к нагреву вещества. При температурах выше 107 К начинаются реакции, приводящие к образованию тяжелых элементов. Современный химический состав Солнечной системы является результатом реакций термоядерного синтеза, протекавших в первых поколениях звезд.
Стадия, когда выброшенное при взрыве Сверхновой вещество перемешивается с межзвездным газом и сжимается, снова образуя звезды, более всего сложна и хуже понятна, чем все остальные стадии. Во-первых, сам межзвездный газ неоднороден, он имеет клочковатую, облачную структуру. Во-вторых, расширяющаяся с огромной скоростью оболочка сверхновой выметает разреженный газ и сжимает его, усиливая неоднородности. В-третьих, уже через сотню лет остаток сверхновой содержит больше захваченного по пути межзвездного газа, чем вещества звезды. Кроме того, вещество перемешивается неидеально.
Может возникнуть вопрос, чем же завершается, в конце концов, космический цикл? Запасы газа уменьшаются. Ведь большая часть газа остается в маломассивных звездах, которые умирают спокойно, и не выбрасывают в окружающее пространство свое вещество. Со временем запасы его истощатся настолько, что ни одна звезда уже не сможет образоваться. К тому времени Солнце и другие старые звезды угаснут. Вселенная постепенно погрузится во мрак.
Но конечная судьба Вселенной может быть и иной. Расширение постепенно прекратится и сменится сжатием. Через много миллиардов лет Вселенная сожмется вновь до невообразимо высокой плотности.
Межзвездный газ
Межзвездный газ составляет около 99% массы всей межзвездной среды и около 2% нашей Галактики. Температура газа колеблется в диапазоне от 4 К до 106 К. Излучает межзвездный газ также в широком диапазоне (от длинных радиоволн до жесткого гамма-излучения).
Существуют области, где межзвездный газ находится в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части межзвездного газа. Есть области, где межзвездный газ состоит из нейтральных атомов водорода (области H I) и области ионизованного водорода (зоны H II), которыми являются светлые эмиссионные туманности вокруг горячих звезд.
По сравнению с Солнцем, в межзвездном газе заметно меньше тяжелых элементов, особенно алюминия, кальция, титана, железа и никеля.
Межзвездный газ есть в галактиках всех типов. Больше всего его в неправильных (иррегулярных), а меньше всего в эллиптических галактиках. В нашей Галактике максимум газа сосредоточено на расстоянии 5 кпк от центра. Наблюдения показывают, что кроме упорядоченного движения вокруг центра Галактики, межзвездные облака имеют также и хаотические скорости. Через 30-100 млн. лет облако сталкивается с другим облаком. Образуются газо-пылевые комплексы. Вещество в них достаточно плотно для того, чтобы не пропускать на большую глубину основную часть проникающей радиации. Поэтому внутри комплексов межзвездный газ холоднее, чем в межзвездных облаках. Сложные процессы преобразования молекул вместе с гравитационной неустойчивостью ведут к возникновению самогравитирующих сгустков - протозвезд.
Таким образом, молекулярные облака должны быстро (менее чем за 106 лет) превратиться в звезды.
Межзвездный газ постоянно обменивается веществом со звездами. Согласно оценкам, в настоящее время в Галактике в звезды переходит газ в количестве примерно 5 масс Солнца в год.
Итак, в процессе эволюции галактик происходит круговорот вещества: межзвездный газ -> звезды -> межзвездный газ, приводящий к постепенному увеличению содержания тяжелых элементов в межзвездном газе и звездах и уменьшению количества межзвездного газа в каждой из галактик. Не исключено, что в истории Галактики могли происходить задержки звездообразования на миллиарды лет.
Межзвездная пыль
Мелкие твердые частицы, рассеянные в межзвездном пространстве почти равномерно перемешаны с межзвездным газом.
Размеры крупных газо-пылевых комплексов, о которых мы говорили выше, достигают десятков сотен парсек, а их масса составляет примерно 105 масс Солнца. Но существуют и небольшие плотные газо-пылевые образования - глобулы размером от 0,05 до нескольких пк и массой всего 0,1 - 100 масс Солнца. Межзвездные пылинки не сферичны и размер их примерно 0,1-1 мкм. Состоят они из песка и графита. Образуются они в оболочках поздних красных гигантов и сверхгигантов, оболочках новых и сверхновых звезд, в планетарных туманностях, около протозвезд. Тугоплавкое ядро одето в оболочку изо льда с примесями, которую в свою очередь окутывает слой атомарного водорода. Пылинки в межзвездной среде либо дробятся в результате столкновений друг с другом со скоростями больше 20 км/с, либо наоборот, слипаются, если скорости меньше 1 км/с.
Присутствие в межзвездной среде межзвездной пыли влияет на характеристики излучения исследуемых небесных тел. Пылинки ослабляют свет от далеких звезд, изменяют его спектральный состав и поляризацию. Помимо этого пылинки поглощают ультрафиолетовое излучение звезд и перерабатывают его в излучение с меньшей энергией. Ставшее в итоге инфракрасным, такое излучение наблюдается в спектрах планетарных туманностей, зон H II, околозвездных оболочек, сейфертовских галактик.
Рекомендуем скачать другие рефераты по теме: quality assurance design patterns системный анализ, 5 баллов рефераты.
Категории:
1 2 3 | Следующая страница реферата