Модифицированный метод Хука-Дживса
| Категория реферата: Рефераты по математике
| Теги реферата: изложение 8 класс по русскому, 5 баллов
| Добавил(а) на сайт: Шустелёв.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
4. Если b2[pic]b1, то производится поиск по образцу.
В. При поиске по образцу используется информация, полученная в процессе исследования, и минимизация функции завершается поиском в направлении, заданном образцом. Эта процедура производится следующим образом:
3. Разумно двигаться из базисной точки b2 в направлении b2-b1, поскольку поиск в этом направлении уже привел к уменьшению значения функции. Поэтому вычислим функцию в точке образца
P1=b1+2(b2-b1) .
В общем случае
Pi=bi+2(bi+1-bi) .
2. Затем исследование следует продолжать вокруг точки Р1 (Рi) .
3. Если наименьшее значение на шаге В, 2 меньше значения в базисной точке b2 (в общем случае bi+1), то получают новую базисную точку b3
(bi+2), после чего следует повторить шаг В, 1. В противном случае не производить поиск по образцу из точки b2 (bi+1), а продолжить исследования в точке b2 (bi+1).
Г. Завершить этот процесс, когда длина шага (длины шагов) будет уменьшена до заданного малого значения.
Модифицированный метод Хука-Дживса
Этот метод нетрудно модифицировать и для учета ограничений .Было выдвинуто предложение , что для этого будет вполне достаточно при решении задачи минимизации присвоить целевой функции очень большое значение там,где ограничения нарушаются .К тому же такую идею просто реализовать с помощью програмирования .
Нужно проверить ,каждая ли точка ,полученная в процессе поиска , принадлежит области ограничений .Если каждая , то целевая функция вычисляется обычным путем . Если нет , то целевой функции присваивается очень большое значение . Таким образом , поиск будет осуществляться снова в допустимой области в направлении к минимальной точке внутри этой области.
В тексте прогаммы модифицированного метода прямого поиска Хука-Дживса сделана попытка реализовать такую процедуру. Рассматриваемая задача формулируется следующим образом :
минимизировать f (x1,x2) = 3x12+4x1x2+5x22 , при ограничениях x1[pic] x2[pic] x1+x2[pic].
Блок-схема данного метода
Нет
Да
Да Нет
Да
Нет
Блок-схема единичного исследования
Да
Нет
Нет
Да
Рекомендуем скачать другие рефераты по теме: стандарты реферата, океан реферат.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата