Молекулярно-кинетическая теория
| Категория реферата: Рефераты по математике
| Теги реферата: решебник по русскому класс, реферати українською
| Добавил(а) на сайт: Мамелфа.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Найдем числовое значение R в СИ, для чего учтем, что, как следует из закона Авогадро, один моль любого газа при одинаковом давлении и одинаковой температуре занимает один и тот же объем. В частности при Т0 = 273K и давлении Р0 = 105 Па объем одного моля газа равен V0 = 22,4·10–³ м³. Тогда R == 8,31 Дж/(моль· К).
Уравнение (28) для одного моля газа можно записать в виде
. (29)
Из уравнения (29) легко получить уравнение для любой массы газа. Газ массой m займет объем V = V0(m/M), где М – масса 1 моль, m/M – число молей газа. Умножив обе части уравнения (29) на m/M, получим .
Так как , то окончательно получаем
. (30)
Уравнение (30) называется уравнением Менделеева – Клапейрона и является основным уравнением, связывающим параметры газа в состоянии теплового равновесия. Поэтому его называют уравнением состояния идеального газа.
Температура - мера средней кинетической энергии
Сравнивая уравнение состояния идеального газа и основное уравнение кинетической теории газов, записанные для одного моля (для этого число молекул N возьмём равным числу Авогадро NА), найдём среднюю кинетическую энергию одной молекулы:
и .
Откуда
. (31)
Средняя кинетическая энергия поступательного движения молекулы не зависит от её природы и пропорциональна абсолютной температуре газа T. Отсюда следует, что абсолютная температура является мерой средней кинетической энергии молекул.
Величина R/NА = k в уравнении (31) получила название постоянной Больцмана и представляет собой газовую постоянную, отнесенную к одной молекуле:
k = 1,38·10-23 Дж/К-23.
Так как =kТ, то средняя квадратичная скорость равна
. (32)
Подставляя значение средней кинетической энергии поступательного движения молекул (31) в основное уравнение молекулярно–кинетической теории газов, получим другую форму уравнения состояния идеального газа:
P = n0kT. (33)
Давление газа пропорционально произведению числа молекул в единице объема на его термодинамическую температуру.
На рис. приведена схема опыта Штерна для определения скорости молекул газа.
В нагревателе с поверхности проволоки, раскаленной электрическим током, испаряются атомы серебра. Попадая из нагревателя через отверстие в вакуумную камеру, молекулы пара с помощью системы щелей формируются в узкий пучок, направленный в сторону двух дисков, вращающихся с угловой скоростью .Диски используются для сортировки молекул по скоростям. Угол между прорезями в дисках . Расстояние между дисками X в процессе эксперимента не изменяется. Для того, чтобы молекула пара попала на приемник детектора частиц, она должна пройти через прорези в дисках. Для этого время прохождения молекулы, движущейся со скоростью V между дисками, должно быть равно времени поворота прорези второго диска на угол .
Поэтому
V=· X/
Рекомендуем скачать другие рефераты по теме: методы курсовой работы, шарарам ответы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата