Настоящая теория чисел
| Категория реферата: Рефераты по математике
| Теги реферата: экзамен, задачи курсовой работы
| Добавил(а) на сайт: Mariam.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
некоторой числовой последовательности, отличающихся на переменную дельту d = а,b,с,....k, имеющей количество значений h и вычисляемую как положительная разница между соседними членами последовательности.
Правило 7.
Если натуральный корень суммы, полученной последовательным сложением дельт d между членами числового ряда, достигает по натуральному корню значения 9, то натуральный корень следующего числа в этом ряду будет равен натуральному корню, от которого произведен отсчет дельт.
Например
Числовой ряд - 12, 13, 16, 22, 45, 68, 106, 111. Значения дельт - 1, 3, 6, 23, 23, 38, 5.
Сумма дельт равна 99, натуральный корень суммы равен 9. Следовательно, натуральные корни первого и последнего членов ряда должны быть равны.
Действительно, натуральные корни чисел 12 и 111 одинаковы и равны натуральному корню 3.
В этом же ряду мы обнаружим еще одну сумму дельт, натуральный корень которой равен 9, если начнем отсчет от числа 16 с натуральным корнем 7.
Значения дельт в этом случае - 6, 23, 23, 38, 5.
Натуральные корни дельт - 6, 5, 5, 2, 5.
Сложение натуральных корней: 6 + 5 = 11, 11 + 5 = 16, 16 + 2 = 18 ... Натуральный корень числа 18 равен 9. Это означает, что следующее в указанном ряду число будет иметь натуральный корень, равный 7. Действительно, число 106 имеет указанный натуральный корень.
______
Для удобства обозначим натуральные циклы через "Z ( | х + d)", где х - некоторый член цикла, d - дельта цикла, Z символ цикла натуральных корней.
Первым членом цикла q называется натуральный корень числа, получаемого в результате сложения (умножения, см.далее) последнего числа последовательности и дельты d(s). Данный принцип указывает на основное свойство циклов натуральных корней, а именно, первый член цикла натуральных корней всегда является результатом взаимодействия последнего члена цикла с дельтой (или ее членом) цикла.
_____
Основной цикл натуральных корней сложения Z ( |x + d) представляет из cебя объединение циклов натуральных корней сложения количеством h для первых h чисел основного цикла, каждый член которого расположен в основном цикле через h знаков и с дельтой цикла D, равной натуральному корню
суммы членов переменной дельты d основного цикла.
Например. Извлечем натуральные корни из числовой последовательности с первым членом х = 1 и переменной дельтой d = 1; 2, т.е. из числовой последовательности 1,2,4,5,7,8,10,11,13,14... Она примет вид 1,2,4,5,7,8,1,2,4... т.е.
_______
Z( |х + 1;2 ).
Натуральный корень суммы переменной дельты D = 1 + 2 = 3, количество значений переменной дельты h = 2.
Таким образом, полученный цикл 1,2,4,5,7,8 является совмещением 2-х циклов первых 2-х чисел, т.е. чисел 1 и 2, с дельтой цикла D = 1 + 2 = 3 и расположенными через 2 знака в основном цикле. Т.е. два цикла:
_____ _____
1,4,7 - Z( |7 + 3 ) и 2,5,8 - Z( |8 + 3).
Получив цикл 1,2,4,5,7,8 мы вправе поставить на место х число 8, дающее в сумме с членом дельты d1 = 2 первый член цикла - число 1.
Рекомендуем скачать другие рефераты по теме: реферат народы, шпаргалки по государству и праву.
Категории:
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата