Некоторые приложения определенного интеграла в математике
| Категория реферата: Рефераты по математике
| Теги реферата: профилактика реферат, дипломная работа по юриспруденции
| Добавил(а) на сайт: Олег.
Предыдущая страница реферата | 1 2 3 4 5 6
Положим, что в формуле (1). Тогда , , …, , ; при x=b все функции v, v’, …, обращаются в нуль. Пользуясь для u, u’, u’’, … функциональным обозначением f(x), f’(x), f’’(x), …, перепишем (1) в виде
.
Отсюда получается формула Тейлора с дополнительным членом в виде определенного интеграла
.
Заменим здесь b через x, а через :
.
Новое выражение для дополнительного члена, не содержит никаких неизвестных чисел.
Если угодно, из этого выражения можно было бы вывести и уже знакомые нам формы дополнительного члена. Например, воспользовавшись тем, что множитель подинтегральной функции не меняет знака, можно применить к последнему интегралу обобщенную теорему о среднем
,
где с содержится в промежутке . Таким образом, мы вновь получили лангранжеву форму дополнительного члена.
5. Заключение.
В курсовой работе даны определения определенного и несобственного интеграла и его виды, рассмотрены вопросы некоторого приложения определенного интеграла. В частности, формула Валлиса, имеющая историческое значение, как первое представление числа p в виде предела легко вычисляемой рациональной варианты, а также вычисление интеграла Эйлера-Пуассона с помощью этой формулы. Рассмотрен способ получения формулы Тейлора с дополнительным членом в интегральной форме.
Формулой Валлиса в теоретических исследованиях пользуются и сейчас (например, при выведении формулы Стирлинга). Что касается фактического приближенного вычисления p, то существуют методы, гораздо более быстро ведущие к цели.
Интеграл Эйлера-Пуассона применяется при вычислении более сложных несобственных интегралов, встречается в теории вероятности.
Новое выражение для дополнительного члена в формуле Тейлора интересно тем, что оно не содержит никаких неизвестных чисел.
Данную курсовую работу можно использовать в качестве лекционного и справочного материала.
Список литературы
Фихтенгольц Г. М. «Курс дифференциального и интегрального исчисления»(II том) – Москва, 1970г.
Пискунов Н.С. «Дифференциальное и интегральное исчисления»(I том) - Москва, 1970г.
Эрмит Ш. «Курс анализа» - Москва, 1936г.
Скачали данный реферат: Javlenskij, Великий, Унгерн, Сиянкин, Balashov, Peskov.
Последние просмотренные рефераты на тему: ценные бумаги реферат, решебник 5 класс, древния греция реферат, реферат по биологии 7 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6