Новое объяснение релятивистских явлений
| Категория реферата: Рефераты по математике
| Теги реферата: диплом управление, куплю диплом купить
| Добавил(а) на сайт: Серпионов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В современной Специальной теории относительности объяснение этих отношений вызывает трудности понимания у новичков, только начинающих знакомство с основами этой теории, и у многих специалистов, досконально изучивших теорию относительности.
Это непонимание начинается сразу же с объяснения двух парадоксов (или, если хотите, противоречий): «замедление» времени в движущейся системе отсчета и «сжатие» масштаба вдоль оси, параллельной вектору скорости относительного движения этих систем, в движущейся системе отсчета. По своей сути и структуре оба парадокса подобны, поэтому мы рассмотрим один из них.
Парадокс часов. Пусть два наблюдателя находятся в одной инерциальной системе отсчета и устанавливают свои часы с абсолютной точностью, т.е. так, чтобы показания часов в любой момент времени всегда совпадали.
Затем один из наблюдателей или же оба одновременно переходят в разные инерциальные системы отсчета и сравнивают показания часов. Первый наблюдатель, покоящийся в своей системе отсчета, заметит, что часы движущегося наблюдателя идут медленнее в (1–v2/c2)1/2 раз. Второй наблюдатель в своей системе отсчета обнаружит обратную картину. Показания его часов опережают показания первого наблюдателя ровно во столько же раз. Кто прав? У кого из наблюдателей часы идут медленнее? Как разрешить это противоречие?
Суть разрешения парадокса не в том, сможем мы или нет «синхронизировать» часы наблюдателей, покоящихся в разных инерциальных системах отсчета. Суть в более простом, но более принципиальном вопросе: «замедление» времени реально, т.е. действительно имеет место, или же время в двух этих системах течет одинаково, а «замедление» времени в движущейся системе (как явление) обусловлено, например, эффектом Доплера?
Сам Эйнштейн писал [6]:
«Если в А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (на что требуется, скажем, t сек.), то эти часы по прибытии в А будут отставать по сравнению с часами, оставшимися неподвижными, на t(v2/c2)/2 сек. Отсюда можно заключить, что часы с балансиром, находящиеся на земном экваторе, должны идти медленнее, чем такие же часы, помещенные на полюсе, но в остальном поставленные в одинаковые условия».
Как мы видим, Эйнштейн нисколько не сомневался в реальности отставания движущихся часов. И, заметим, это было написано практически за 10 лет до создания Общей теории относительности! Так, что ссылки на влияние ускорения на движущиеся часы совершенно излишни. Специальная теория относительности есть замкнутая теория и в гипотезе об эквивалентности инерциальной и гравитационной масс не нуждается.
Принцип логической непротиворечивости запрещает считать научными те теории, в которых имеются неразрешимые внутренние противоречия. Чтобы разрешить этот парадокс (у кого часы идут быстрее) мы должны выбрать один из двух взаимоисключающих вариантов.
Время в движущейся системе отсчета действительно течет медленнее, чем в неподвижной. Если мы будем исходить из равноправия инерциальных систем отсчета (принцип Галилея – Пуанкаре), тогда мы столкнемся с логическим противоречием. Каждый наблюдатель покоится в своей системе отсчета. И каждый будет утверждать, что именно у него время течет быстрее. Это приводит к нарушению логики, а, как известно, теории с подобными противоречиями не могут считаться научными. Чтобы устранить логические противоречия, мы должны признать существование единственной привилегированной системы отсчета, которая абсолютно неподвижна. По отношению к ней во всех иных системах отсчета время всегда должно течь медленнее. Только так мы можем избавиться от логических противоречий. Но это достигается дорогой ценой – отречением от принципа равноправия инерциальных систем отсчета (принципа Галилея – Пуанкаре). Те же рассуждения остаются справедливыми и для «сокращения» отрезка. Итак, при действительном сокращении длины отрезка и замедлении времени возникают неразрешимые противоречия.
Все инерциальные системы равноправны и время в них едино, т.е. одинаково, и меняется в одном темпе (ньютоновское абсолютное время). Замедление времени это явление, обусловленное эффектом Доплера. То же самое имеет место для сокращения отрезка. Пространство является общим и евклидовым для всех инерциальных систем отсчета. Сокращение отрезка есть явление, обусловленное различием ориентации фронта световой волны в сравниваемых инерциальных системах отсчета.
Эйнштейн и апологеты его теории не были последовательны в своих высказываниях. 4-пространство-время манило их, но вело к неразрешимым парадоксам (логическим противоречиям). Чтобы «избавиться» от них апологеты проявляли непоследовательность, то, утверждая первый вариант, то «скатываясь» ко второму, и в то же время не признавая ни единства времени, ни общего пространства для всех инерциальных систем.
Для иллюстрации процитируем одного из популяризаторов СТО (на популяризацию СТО и объяснение парадоксов мало кто отваживается) [7]:
«... Часто говорят, интерпретируя полученный результат, что движущиеся часы идут медленнее неподвижных. Нельзя не признать эту фразеологию крайне неудачной. Дело в том, что часы во всех ИСО идут совершенно одинаково. Различным оказывается отсчет промежутков времени между событиями».
Мы специально выделили жирным шрифтом в цитате признание единства времени, т.е. признание второго варианта. Но в том же учебнике читаем [7]:
«... современная физика отказалась от абсолютного пространства и времени... Современная физика пришла к заключению, что время течет по-разному в разных системах отсчета».
Сказав «а», автор боится сказать «б», т.е. словесно объявляет свою приверженность первому варианту. Вот вам пример логической непоследовательности в объяснении релятивистских явлений. В.Г.Левич твердо стоит на первом варианте, но не «спускается» до объяснений [2]:
«Движущиеся часы ... идут медленнее, чем часы, покоящиеся в этой системе отсчета ... Не существует универсального мирового времени».
Логических противоречий, возникающих при использовании принципа Галилея – Пуанкаре, он «не видит». Теперь процитируем объяснение «сжатия» движущегося отрезка [7]:
«Часто спрашивают: чему равна длина линейки «на самом деле»? Этот вопрос лишен смысла, если задавать его «вообще». В каждой системе отсчета линейка имеет свою длину; это и есть ее длина «на самом деле». Все системы равноправны и все определяемые в этих системах длины линейки также равноправны... Для линейки существует все же одна «избранная» система координат, а именно та, в которой она покоится».
Вот вам «равноправие» инерциальных систем на словах и «избранная» система на деле!
2. Теория, изъеденная парадоксами
Как только Эйнштейн принял концепцию действительного замедления времени и действительного сокращения пространства в направлении движения и одновременно продекларировал равноправие инерциальных систем отсчета, «парадоксы» (логические противоречия) посыпались как из рога изобилия.
Рассмотренные нами два парадокса Эйнштейн относил к кинематическим, т.е. обусловленным относительным движением инерциальных систем. К кинематическим эффектам относится и большая группа парадоксов, связанных с вращательным движением, о которой в учебниках и книгах вообще стараются не упоминать. Рассмотрим несколько таких парадоксов (нелепостей СТО).
Пусть неподвижное кольцо расчерчено радиальными линиями, число которых No=1000 (см. рис.1, левое кольцо). Будем постепенно увеличивать скорость вращения кольца. Благодаря «лоренцеву сокращению» расстояние между линиями будет уменьшаться в (1–v2/c2)1/2 раз. Когда скорость достигнет v=0,045с, мы сфотографируем вращающееся кольцо. Сколько линий окажется на фотографии No=1000 или же N=1001?
Если No = 1000, то «лоренцево сокращение» отсутствует, т.е. Специальная теория относительности дает неверный результат (лжет).
Рекомендуем скачать другие рефераты по теме: конспекты занятий в саду, реферат по педагогике.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата