Общие сведения о магнитных жидкостях
| Категория реферата: Рефераты по математике
| Теги реферата: quality assurance design patterns системный анализ, культурология как наука
| Добавил(а) на сайт: Polikarpij.
1 2 3 | Следующая страница реферата
Общие сведения о магнитных жидкостях
Магнитные жидкости представляют собой взвесь однодоменных микрочастиц ферро- и ферримагнетиков в жидкой среде (керосине, воде, толуоле, минеральных и кремнийорганических маслах и т.п.). В качестве магнетика используется высокодисперсное железо, ферромагнитные окислы g Fe2O3, Fe3O4, ферриты никеля, кобальта. Дисперсные частицы, вследствие малости их размеров (около 10 нм), находятся в интенсивном броуновском движении. Агрегативная устойчивость коллоидных систем с магнитными частицами обеспечивается адсорбционными слоями, препятствующими сближению частиц на такие расстояния, при которых энергия притяжения будет больше, чем разупорядочивающая энергия теплового движения. С этой целью, т.е. для устойчивости по отношению к укрупнению частиц вследствие их слипания, в коллоид вводится определенное количество стабилизатора - поверхностно-активного вещества (ПАВ). Как правило, в качестве ПАВ используют вещества, состоящие из полярных органических молекул, которые и создают на поверхности дисперсных частиц адсорбционно-сольватные слои. Намагниченность насыщения концентрированных магнитных жидкостей может достигать 100 кА/м в магнитных полях напряженностью 105 А/м при сохранении текучести МЖ. Магнитная восприимчивость магнитных жидкостей на несколько порядков выше, чем у гомогенных парамагнитных жидкостей и достигает значения 10-15. Ее величина зависит от размера частиц и их объемной концентрации. Однако, увеличение размера частиц ограниченно из-за возможности слипания частиц за счет их большого магнитного момента или нарушения условия однодоменности. Поэтому, в устойчивых коллоидах обычно размер частиц не превышает 10-15 нм. Максимальная концентрация магнитного вещества в магнитной жидкости зависит от диаметра частиц и минимально возможного расстояния между ними. Кроме этого, на ее величину влияет и распределение частиц по размерам. Обычно максимальная объемная концентрация твердой фазы в МЖ не превышает 0,25. Наиболее распространенной магнитной жидкостью является МЖ типа магнетит в керосине с олеиновой кислотой в качестве стабилизатора. Впервые методика получения стабилизированного коллоидного раствора магнетита была предложена В.Элмором [4]. В последнее время такие жидкости получают методом конденсации при осаждении магнетита щелочью из водного раствора солей двух- и трехвалентного железа. Подробное описание большинства подобных методик приведено в работе [5]. В результате получают МЖ, вязкость которой при намагниченности насыщения 50-60 кА/м может быть сравнима с вязкостью воды. Полидисперсность магнетитовых частиц, полученных описанным способом, определяется колоколообразной функцией распределения частиц с шириной распределения порядка среднего размера частиц (10 нм). В столь малых частицах при сохранении в них самопроизвольной намагниченности возрастает вероятность тепловых флуктуаций магнитного момента [6]. В результате этого возможна хаотическая переориентация момента частицы относительно ее кристаллографических направлений с характерным временем неелевской релаксации tN = t0·exp(g), где g = Ea/kT, - эффективная энергия магнитной анизотропии, t0=10-9с [7]. Такие частицы, вследствие их специфики, получили название "суперпарамагнитные " [8].
В жидкой среде возможна также вращательная диффузия самих частиц. В этом случае может проявиться броуновский механизм релаксации магнитного момента, при этом, преобладание броуновского или неелевского механизма релаксации зависит от соотношения времен релаксации tN и вращательной (h - вязкость дисперсионной среды).
Основным средством управления магнитными жидкостями является магнитное поле. Например, с помощью воздействия на них неоднородного магнитного поля можно достичь объемных пондеромоторных сил на несколько порядков превышающих силу тяжести. Эти силы используются в магнитожидкостных сепараторах, датчиках ускорений и т.д. Вследствие возможности локализации МЖ полем были разработаны магнитожидкостные уплотнения, управляемые смазочные материалы, магниточувствительные жидкости для дефектоскопии и др. На практике применяются самые разнообразные магнитные жидкости, среди которых следует выделить МЖ на основе минеральных масел и кремнийорганических сред. Вязкость таких магнитных жидкостей при намагниченности насыщения 20-40 кА/м может достигать величины порядка 104 Па·с, поэтому, их иногда идентифицируют с магнитными пастами. Для нужд медицины разрабатываются МЖ на пищевых растительных маслах.
Магнитная жидкость как однородная намагничивающаяся среда.
На начальном этапе исследования магнитных жидкостей было сформировано представление о них как однородной жидкой намагничивающейся среде с термодинамически равновесной поляризацией. Так в работе Розенцвейга и Нойрингера [9] пондеромоторное воздействие неоднородного магнитного поля на магнитную жидкость рассматривается на основе наличия в ней объемной плотности сил и объемной плотности импульсов сил.
Представление магнитной жидкости в виде однородного дипольного газа, в котором элементарным носителем магнитного момента является дисперсная частица позволяет применить для описания намагничивания такой системы закон Ланжевена [10], выведенный им для ансамбля молекул парамагнитного газа. В этом случае выражение для намагниченности магнитной жидкости М в поле Н может быть представлено в виде:
(1.1)
где МS - намагниченность насыщения исходного диспергированного вещества, Q - объемная концентрация твердой фазы, М¥ - намагниченность насыщения коллоида, m - магнитный момент дисперсной частицы.
В слабых полях, когда, функция Ланжевена может быть представлена первым членом разложения в ряд Тейлора . В этом случае выражение для начальной магнитной восприимчивости имеет вид:
(1.2)
Предполагая, что форма дисперсных частиц близка к сферической, с учетом m = MSV (V - объем частицы) получаем:
(1.3)
где M¥ = nm - намагниченность насыщения МЖ, d - диаметр частицы, n - числовая концентрация.
В достаточно сильных магнитных полях, когда, функция Ланжевена может быть представлена в виде и уравнение (1.1) принимает вид:
(1.4)
На основе ланжевеновской зависимости намагниченности от поля возник метод магнитной гранулометрии [11]. С его помощью возможно определение диаметра d частицы по измерениям магнитной восприимчивости в слабых полях и по измерениям намагниченности в сильных полях, т.е. в области, близкой к насыщению. Соответствующие расчеты проводятся по формулам:
; (1.5)
где в области линейной зависимости .
В первых экспериментальных работах было получено хорошее согласие кривых намагничивания с функцией Ланжевена [10,12]. Некоторое отклонение хорошо устраняется учетом распределения частиц по размерам. Так, использование в качестве функции распределения формулы Гаусса дало возможность представить зависимость намагниченности от поля в виде [10]:
(1.6)
где n - полное число частиц в объеме, n(a) - число частиц, диаметр которых удовлетворяет d < a.
В дальнейшем магнитные свойства МЖ изучались в работах [13-15]. В работе [13] различие между значениями объемной концентрации, вычисленными независимо по плотности МЖ и ее намагниченности насыщения, объясняется тем, что молекулы ПАВ могут образовать в результате реакции с магнетитом немагнитное соединение - олеат железа. Вследствие этого происходит уменьшение диаметра магнитного керна на некоторую величину, которая, по предположению авторов работы, примерно равна постоянной решетки кристаллического магнетита. Выражение для намагниченности в этом случае имеет вид:
ni - число частиц диаметром di.
Рекомендуем скачать другие рефераты по теме: экзамен, доклад по обж.
Категории:
1 2 3 | Следующая страница реферата