Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период.

Будем снабжать штрихом ( х'ik , y'i и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде.

Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором :

_
у = ( у1 , у2 , … , yn ) , 333 ( 2 )


а совокупность значений x1 , x2 , … , xn ,определяющих валовый выпуск всех отраслей – вектор-планом :

_
x = ( x1 , x2 , … , xn ). 333 ( 3 )

Зависимость между двумя этими векторами определяется балансовыми равенствами ( 1 ). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х, т.к. кроме искомых неизвестных хk , содержат n2 неизвестных xik , которые в свою очередь зависят от xk.

Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :


33333 xik
aik = ––– ( i , k = 1 , 2 , … , n ).
33333xk

Величины aik называются коэффициентами прямых затрат или технологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что


x'ik 333 xik
––– = ––– = aik = const 333 ( 4 )
x'k 333 xk

Исходя из этого предложения имеем

xik = aikxk , 333 ( 5 )



т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому выпуску, или, другими словами, зависят линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют условием линейности прямых затрат.

Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу


333 a11 a12 … a1k … a1n
333 a21 a22 … a2k … a2n
A= ………………….
333 ai1 ai2 … aik … ain
333 an1 an2 … ank … ann

которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу неотрицательной.

Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1

Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель :


x1 - ( a11x1 + a12x2 + … + a1nxn ) = y1
x2 - ( a21x1 + a22x2 + … + a2nxn ) = y2 ( 6 )
……………………………………
xn - ( an1x1 + an2x2 + … + annxn ) = yn ,

характеризующую баланс затрат - выпуска продукции, представленный в табл.1

Система уравнений ( 6 ) может быть записана компактнее, если использовать матричную форму записи уравнений:

3 _ 33 _ 33 _
Е·х - А·х = У , или окончательно
33333333 _ 3 _
( Е - А )·3х = У , ( 6' )

где Е – единичная матрица n-го порядка и


33333 1-a11 -a12 … -a1n
E - A= -a21 1-a22 … -a2n
333333 …………………
333333 -an1 -an2 … 1-ann

Уравнения ( 6 ) содержат 2n переменных ( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных.

Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ).

Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:

Табл. 2

№ отрас
№ отрас
Потребление
Итого затрат Конечный продукт Валовый продукт
1
0.2
0.4
260 240 500
0.55
160
0.1
160
315 85 400
Итого затрат в k-ю отрасль …
375 200
575
575
 
Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2

Рассчитываем по данным этой таблицы коэффициенты прямых затрат:

100 160 275 40 а11 = –––– = 0.2 ; а12 = –––– = 0.4 ; а21 = –––– = 0.55 ; а22 = –––– = 0.1 500 400 500 400

Эти коэффициенты записаны в табл.2 в углах соответствующих клеток.

Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2


х1 - 0.2х1 - 0.4х2 = у1
х2 - 0.55х1 - 0.1х2 = у2

Эта система двух уравнений может быть использована для определения х1 и х2 при заданных значениях у1 и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д.
Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800 и т.д.



РЕШЕНИЕ БАЛАНСОВЫХ УРАВНЕНИЙ
С ПОМОЩЬЮ ОБРАТНОЙ МАТРИЦЫ.
КОЭФФИЦИЕНТЫ ПОЛНЫХ ЗАТРАТ.


Вернемся снова к рассмотрению балансового уравнения ( 6 ).

Первый вопрос, который возникает при его исследование, это вопрос о существование при заданном векторе У>0 неотрицательного решения х>0, т.е. о существовании вектор-плана, обеспечивающего данный ассортимент конечного продукта У. Будем называть такое решение уравнения ( 6' ) допустимым решением.

Заметим, что при любой неотрицательной матрице А утверждать существование неотрицательного решения нельзя.

Так, например, если

0.9 0.8 0.1 -0.8 А= , то Е - А =
0.6 0.9 -0.6 0.1
и уравнение ( 6' ) запишется в виде
0.1 -0.8 х1 у1
-0.6 0.1 х2 у2

или в развернутой форме

0.1х1 - 0.8х2 = у1 ( a )
-0.6х1 + 0.1х2 = у2

Сложив эти два уравнения почленно, получим уравнение

-0.5х1 - 0.7х2 = у1 + у2,
которое не может удовлетворяться неотрицательным значениям х1 и х2, если только у1>0 и у2>0 ( кроме х1=х2=0 при у1=у2=0 ).

Наконец уравнение вообще может не иметь решений ( система ( 6 ) – несовместная ) или иметь бесчисленное множество решений ( система ( 6 ) – неопределенная ).

Следующая теорема, доказательство которой мы опускаем, дает ответ на поставленный вопрос.

Теорема. Если существует хоть один неотрицательный вектор х>0, удовлетворяющий неравенству ( Е - А )·х>0, т.е. если уравнение ( 6' ) имеет неотрицательное решение x>0, хотя бы для одного У>0, то оно имеет для любого У>0 единственное неотрицательное решение.

При этом оказывается, что обратная матрица ( Е - А ) будет обязательно неотрицательной.


Рекомендуем скачать другие рефераты по теме: скачать изложение, конспект урока на тему.


Категории:




1  2  3  4 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •