Первые шаги астрономической оптики
| Категория реферата: Рефераты по математике
| Теги реферата: реферат способы, курсовая работа
| Добавил(а) на сайт: Juhancev.
1
Первые шаги астрономической оптики
В ночь на 7 января 1610 г. в истории наблюдательной астрономии произошел подлинный переворот: впервые зрительная труба была направлена на небо. В течение нескольких ночей великий Галилей (1564 - 1642) открыл недоступные невооруженному глазу цирки, горные вершины и цепи на Луне, спутники Юпитера, мириады звезд, составляющих Млечный Путь. Несколько позже Галилей наблюдал фазы Венеры и странные образования у Сатурна (что это были знаменитые кольца, стало известно значительно позже, в 1658 г., в результате наблюдений Гюйгенса).
С завидной оперативностью Галилей публикует результаты своих наблюдений в "Звездном вестнике". Книга почти в 10 печатных листов была набрана и отпечатана всего за несколько дней - явление, почти невозможное в наше время. Она вышла уже в марте того же 1610 г.
Первые телескопы Галилея |
Галилей не считается изобретателем примененной им зрительной трубы, хотя и изготовил ее лично. Ранее до него дошли слухи, что оптические инструменты, в которых объективом служит плосковыпуклая линза, а окуляром - плосковогнутая, появились в Голландии. Приоритет изобретения оспаривали несколько голландских оптиков, в том числе Захарий Янсен, Якоб Меций и Генрих Липперсгей (последний, по-видимому, имел для этого больше оснований). Однако Галилей сумел самостоятельно разгадать устройство такого прибора и воплотить свое представление об этих трубах "в металл", построив за несколько дней три трубы. Качество каждой последующей было значительно выше предыдущей. Но главное, именно Галилей первым направил свою трубу на небо!
Появилась "голландская" труба не на пустом месте. Еще в 1604 г. вышла книга И. Кеплера "Дополнения к Вителлию, в которых излагается оптическая часть астрономии". Написанное в форме дополнения к трактату авторитетного польского ученого XII в. Вителлия (Вителло) это сочинение стало явлением в исследовании законов геометрической оптики. Действительно, на с. 102 Кеплер, рассматривая ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз, дает теоретическое обоснование устройству будущей "голландской" (или "галилеевой") оптической трубы.
Один из первых телескопов системы Кеплера |
Это тем более удивительно, что сам Кеплер из-за врожденного дефекта зрения не мог быть хорошим наблюдателем. Он страдал монокулярной полиопией (множественным зрением), при которой одиночный объект кажется множественным. Этот дефект усугублялся еще и сильной близорукостью. Но справедливы слова Гёте: "Когда историю жизни Кеплера сопоставляешь с тем, кем он стал и что он сделал, радостно изумляешься и при этом убеждаешься, что истинный гений преодолевает любые препятствия".
Узнав об открытиях Галилея и получив от него экземпляр "Звездного вестника", Кеплер уже 19 апреля 1610 г. направляет Галилею восторженный отзыв, одновременно публикуя его ("Разговор со звездным вестником"), и... возвращается к рассмотрению оптических вопросов. А через несколько дней после завершения "Разговора" Кеплер разрабатывает проект устройства зрительной трубы нового типа - телескопа-рефрактора, описание которого помещает в своем сочинении "Диоптрике". Книга была написана в августе - сентябре того же 1610 г., а вышла из печати в 1611 г.
В этой работе Кеплер среди других рассмотрел в качестве основы астрономической трубы нового типа комбинацию двух двояковыпуклых линз. Задача, поставленная им, формулировалась так: "С помощью двух двояковыпуклых стекол получить отчетливые, большие, но обратные изображения. Пусть линза, служащая объективом, находится на таком расстоянии от предмета, что его обратное изображение получается неотчетливым. Если теперь между глазом и этим неотчетливым изображением, недалеко от последнего, поставить второе собирательное стекло (окуляр), то оно сделает исходящие от предмета лучи сходящимися и даст благодаря этому отчетливое изображение".
Кеплер показал, что возможно получение и прямого изображения. Для этого в данную систему необходимо ввести третью линзу.
Преимущество системы, предложенной Кеплером, заключалось прежде всего в большем поле зрения. Известно, что лучи света от звезды, находящейся далеко от оптической оси, не попадают в центр окуляра. И если в вогнутом окуляре "голландско-галилеевой" трубы они еще дальше отклоняются от центра (т. е. не видны), то в выпуклом окуляре Кеплера они соберутся к центру и попадут в зрачок глаза. Благодаря этому значительно увеличивается поле зрения, в котором все наблюдаемые объекты видны ясно и четко. К тому же в плоскости изображения в трубе Кеплера между объективом и окуляром можно поместить прозрачную пластинку с отградуированной на ней сеткой или шкалой. Это позволит производить не только наблюдения, но и необходимые измерения. Ясно, что "кеплерова" труба вскоре вытеснила "голландскую", которая в настоящее время применяется только в театральных биноклях.
У Кеплера не было необходимых средств и специалистов для изготовления телескопа своей конструкции. Но немецкий математик, физик и астроном К. Шейнер (1575-1650) по описанию, данному в "Диоптрике", в 1613 г. построил первый телескоп-рефрактор кеплеровского типа и применил его для наблюдения солнечных пятен и изучения вращения Солнца вокруг оси. Он же позже изготовил и трубу из трех линз, дающую прямое изображение.
Разработка эффективной конструкции телескопа была не единственным вкладом Кеплера в астрономическую и общую оптику. Среди его результатов отметим: доказательство основного фотометрического закона (интенсивность света обратно пропорциональна квадрату расстояния от источника), разработку математической теории рефракции и теории механизма зрения. Кеплер ввел термины "сходимость" и "расходимость" и показал, что очковые линзы исправляют дефекты зрения, изменяя сходимость лучей, прежде чем те попадут в глаз. Термины "оптическая ось" и "мениск" также введены в научное обращение Кеплером.
И в "Дополнениях", и в "Диоптрике" Кеплер изложил настолько революционный материал, что он вначале не был понят и не скоро одержал победу.
Не так давно итальянский ученый-оптик В. Ронки писал: "Гениальный комплекс работ Кеплера содержит все основные понятия современной геометрической оптики: ничто не утратило здесь значения за минувшие три с половиной столетия. Если какое-либо из положений Кеплера забыто, то об этом можно только пожалеть. Нынешнюю оптику можно с полным правом назвать кеплеровской". И далее: "Оптика Кеплера, великолепная по своему значению и влиянию на последующие поколения, плодотворности в научной и практической области, жизненности, устойчивости против нападок критики, выдержала испытания временем вплоть до нынешних дней". Но, "бесспорно, что в наши дни имя Кеплера в оптике почти забыто. Его имя сейчас упоминается лишь иногда в названии зрительной трубы с окуляром, сводящим лучи (многие называют ее просто астрономической). Рядовой человек может подумать, что Кеплер никогда не занимался углубленно оптикой, а был астрономом, которому однажды пришла счастливая мысль использовать положительный окуляр".
После Кеплера важные шаги в развитии теории и ее практических приложений в оптике были сделаны Р. Декартом (1596-1650) и X. Гюйгенсом (1629-1695). Еще Кеплер пытался сформулировать закон преломления, однако точного выражения для коэффициента преломления ему найти не удалось, хотя в ходе экспериментов им открыто явление полного внутреннего отражения. Точная формулировка закона преломления была дана Декартом в разделе "Диоптрика" знаменитого сочинения "Рассуждение о методе" (1637). Для устранения сферических аберраций Декарт комбинирует сферические поверхности линз с гиперболическими и эллиптическими.
Гюйгенс работал с перерывами над своим сочинением "Диоптрика" 40 лет. При этом вывел основную формулу линзы, связав положение предмета на оптической оси с положением его изображения. Для уменьшения сферических аберраций телескопа он предложил конструкцию "воздушного телескопа", в котором объектив, имевший большое фокусное расстояние, располагался на высоком столбе, а окуляр - на штативе, установленном на земле. Длина такого "воздушного телескопа" достигала 64 м. С его помощью Гюйгенс обнаружил, в частности, кольца Сатурна и спутник Титан. В 1662 г. Гюйгенс предложил новую оптическую систему окуляра, впоследствии получившую его имя. Окуляр состоял из двух двояковыпуклых линз, разделенных значительным воздушным промежутком. Конструкция позволяла устранить хроматическую аберрацию и астигматизм. Известно также, что Гюйгенсу принадлежит и разработка волновой теории света.
Но для дальнейшего решения теоретических и практических проблем оптики был необходим гений И. Ньютона. Следует отметить, Ньютон (1643-1727) стал первым, кто уяснил, что размытость изображений в телескопе-рефракторе, какие бы усилия не предпринимались для устранения сферической аберрации, связана с разложением белого света на цвета радуги в линзах и призмах оптических систем (хроматическая аберрация). Ньютон выводит формулу хроматической аберрации.
После многочисленных попыток создать конструкцию ахроматической системы, Ньютон остановился на идее зеркального телескопа (рефлектора), объектив которого представлял собою вогнутое сферическое зеркало, не обладающее хроматической аберрацией. Овладев искусством получения сплавов и шлифовки металлических зеркал, ученый приступил к изготовлению телескопов нового типа. Первый рефлектор, построенный им в 1668 г. имел весьма скромные размеры: длина-15 см, диаметр зеркала - 2,5 см. Второй, созданный в 1671 г., был значительно больше. Он сейчас находится в музее Лондонского королевского общества.
Ньютон изучил также явление интерференции света, измерил длину световой волны, сделал ряд других замечательных открытий в оптике. Он считал свет потоком мельчайших частиц (корпускул), хотя и не отрицал его волновой природы. Только в XX в. удалось "примирить" волновую теорию света Гюйгенса с корпускулярной Ньютона-в физике утвердились представления о корпускулярно-волновом дуализме света.
Историки науки утверждают, что в XVII в. произошла естественно-научная революция. Кеплер был у ее истоков, открыв законы обращения планет вокруг Солнца. Ньютон на завершающем этапе стал основоположником современной механики, создателем математики непрерывных процессов. Эти ученые навечно вписали свои имена и в становлении астрономической оптики.
Скачали данный реферат: Октябрина, Кирьяков, Efrem, Olimpiada, Katranovskij, Топоров.
Последние просмотренные рефераты на тему: качество реферат, ответы по биологии класс, биология 6 класс, реферати безкоштовно.
Категории:
1