Пирамида
| Категория реферата: Рефераты по математике
| Теги реферата: сочинение на тему зима, решебник 5 класс
| Добавил(а) на сайт: Galina.
Предыдущая страница реферата | 1 2
Пример 4. В правильной четырехугольной усеченной пирамиде (рис.5) площади нижнего и верхнего оснований соответственно равны B и b, а боковое ребро составляет с плоскостью нижнего основания угол в 45º. Определить площадь диагонального сечения.
Решение. Стороны оснований равны √B и √b. Отсюда по теореме Пифагора основания диагонального сечения, которым является равнобочная трапеция, равны √2B и √2b. Далее, так как угол при основании этой трапеции равен 45º, то ее высота равна (√2B – √2b) : 2 и, значит, площадь искомого сечения
(√2B + √2b) ∙ √2B – √2b = 2B – 2b = B – b
2 2 4 2
Задача повышенной сложности
1. В основании пирамиды лежит равнобочная трапеция, диагональ которой l составляет с большим основанием угол а. Площадь боковой поверхности этой пирамиды S. Боковые грани пирамиды наклонены к плоскости основания ее под равными углами, определить эти углы.
Высота пирамиды [KO] падает в центр вписанной окружности.
│AB │+│CD│=│AD│+│BC│;
2│AB│=2│AM│; │AB│=│AM│;
2r = │CM│;
│CM│= l sina; │AM│=l cosa.
Боковая поверхность пирамиды представляет из себя площади треугольников с равными высотами. Периметр основания:
│AD│+│BC│+│AB│+│CD│=4│AM│;
S = r :2cos x ∙4 │AM│;
cos x = 2r ∙│AM│: S=│CM│∙│AM│: S= l²∙ sin² a : 2S
Скачали данный реферат: Rjasnoj, Пярин, Larin, Sinklitikija, Изида, Ipatij.
Последние просмотренные рефераты на тему: шпаргалки по психологии, промышленность реферат, культурология, шпоры по управлению.
Категории:
Предыдущая страница реферата | 1 2