Преобразования фигур
| Категория реферата: Рефераты по математике
| Теги реферата: предмет курсовой работы, мир докладов
| Добавил(а) на сайт: Agnessa.
Предыдущая страница реферата | 1 2
3. Подобие переводит плоскости в плоскости.
Две фигуры называются подобными, если они переводятся одна в другую
преобразованием подобия.
Гомотетия
Гомотетия – простейшее преобразование относительно центра O с коэффициентом гомотетии k. Это преобразование, которое переводит произвольную точку X’ луча OX, такую, что OX’ = k*OX.
Свойство гомотетии: 1. Преобразованием гомотетии переводит любую
плоскость, не проходящую через центр гомотетии, в параллельную плоскость
(или в себя при k=1).
Доказательство. Действительно, пусть O – центр гомотетии и ( - любая
плоскость, не проходящая через точку O. Возьмем любую прямую AB в плоскости
(. Преобразование гомотетии переводит точку A в точку A’ на луче OA, а
точку B в точку B’ на луче OB, причем OA’/OA = k, OB’/OB = k, где k –
коэффициент гомотетии. Отсюда следует подобие треугольников AOB и A’OB’. Из
подобия треугольников следует равенство соответственных углов OAB и OA’B’, а значит, параллельность прямых AB и A’B’. Возьмем теперь другую прямую AC
в плоскости (. Она при гомотетии перейдет а параллельную прямую A’C’. При
рассматриваемой гомотетии плоскость (перейдет в плоскость (’, проходящую
через прямые A’B’, A’C’. Так как A’B’||AB и A’C’||AC, то по теореме о двух
пересекающихся прямых одной плоскости соответственно параллельными с
пересекающимися прямыми другой плоскости, плоскости ( и (’ параллельны, что и требовалось доказать.
Движение
Движением - преобразование одной фигуры в другую если оно сохраняет расстояние между точками, т.е. переводит любые две точки X и Y одной фигуры в точки X , Y другой фигуры так, что XY = X Y
Свойства движения: 1. Точки, лежащие на прямой, при движении переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного расположения. Это значит, что если A, B, C, лежащие на прямой, переходят в точки A1,B1,C1. То эти точки также лежат на прямой; если точка B лежит между точками A и C, то точка B1 лежит между точками A1 и C1.
Доказательство. Пусть точка B прямой AC лежит между точками A и C.
Докажем, что точки A1,B1,C1 лежат на одной прямой.
Если точка A1,B1,C1 не лежат на прямой, то они являются вершинами
треугольника. Поэтому A1C1
Скачали данный реферат: Ikashev, Задорнов, Мандрыка, Ипполита, Вьялицын, Евника.
Последние просмотренные рефераты на тему: открытия реферат, русский язык 9 класс изложения, век реферат, решебник по алгебре.
Категории:
Предыдущая страница реферата | 1 2