Применение свойств функций для решения уравнений
| Категория реферата: Рефераты по математике
| Теги реферата: налоги реферат, доклад на тему жизнь
| Добавил(а) на сайт: Акчурин.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Использование экстремальных значений функций
Сущность этого способа решения уравнений в том, что оцениваются правая и левая части уравнения F(x)=G(x) и, если одна из функций принимает значение не меньше некоторого числа А, а другая – не больше этого же числа А, то данное уравнение заменяется системой уравнений:
Этот способ может быть применен к решению следующих уравнений:
в обеих частях уравнения стоят функции разного вида;
в одной части уравнения функция, ограниченная сверху, а в другой – ограниченная снизу;
в одной части уравнения стоит функция, ограниченная сверху или снизу, а в другой – конкретное число.
Рассмотрим конкретные примеры.
2.1 Решить уравнение
Решение: Оценим правую и левую части уравнения:
а) , так как , а ;
б) , так как .
Оценка частей уравнения показывает, что левая часть не меньше, а правая не больше двух при любых допустимых значениях переменной x. Следовательно, данное уравнение равносильно системе
Первое уравнение системы имеет только один корень х=-2. Подставляя это значение во второе уравнение получаем верное числовое равенство:
Ответ: х=-2.
2.2 Решить уравнение
Решение: левая часть уравнения не больше двух, а правая – не меньше двух, следовательно, данное уравнение равносильно системе:
Второе уравнение в этой системе имеет единственный корень х=0. Подставляя найденное значение х в первое уравнение, получаем верное числовое равенство.
Ответ: х=0.
2.3 Решить уравнение
Решение: Оценим левую часть уравнения: , следовательно, . Получили, что в данном уравнении левая часть не больше восьми, а правая часть равна девяти при всех действительных значениях переменной х, поэтому данное уравнение не имеет корней.
Ответ: нет корней.
2.4 Решить уравнения:
Рекомендуем скачать другие рефераты по теме: здоровье реферат, контрольные работы 7 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата