Регрессионный анализ в моделировании систем. Исследование посещаемости WEB сайта (Курсовая)
| Категория реферата: Рефераты по математике
| Теги реферата: банк курсовых, сочинение изложение
| Добавил(а) на сайт: Krumin'.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Теперь более подробно рассмотрим множественную или многофакторную
регрессию. Нас интересует только линейная модель вида:
Y=A0+A1X1+A2X2+…..AkXk.
Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии. При исследовании зависимостей методами множественной регрессии задача формулируется так же, как и при использовании парной регрессии, т. е. требуется определить аналитическое выражение связи между результативным признаком (У) и факторными признаками (х1 х2, х3 ..., хn) найти функцию: Y=f(х1. Х2..., хn)
Построение моделей множественной регрессии включает несколько этапов:
• выбор формы связи (уравнения регрессии):
• отбор факторных признаков:
• обеспечение достаточного объема совокупности для получения несмещенных оценок.
Рассмотрим подробнее каждый из них.
Выбор формы связи затрудняется тем, что, используя математический аппарат, теоретически зависимость между признаками может быть выражена большим числом различных функций.
Выбор типа уравнения осложнен тем, что для любой формы зависимости
выбирается целый ряд уравнений, которые в определенной степени будут
описывать эти связи. Некоторые предпосылки для выбора определенного
уравнения регрессии получают на основе анализа предшествующих аналогичных
исследований или на базе анализа подобных работ в смежных отраслях знаний.
Поскольку уравнение регрессии строится главным образом для объяснения и
количественного выражения взаимосвязей, оно должно хорошо отражать
сложившиеся между исследуемыми факторами фактические связи,
Наиболее приемлемым способом определения вида исходного уравнения регрессии является метод перебора различных уравнений.
Сущность данного метода заключается в том, что большое число уравнений
(моделей) регрессии, отобранных для описания связей какого-либо социально-
экономического явления или процесса, реализуется на ЭВМ с помощью
специально разработанного алгоритма перебора с последующей статистической
проверкой, главным образом на основе t-крнтерия Стьюдeнта и F-критерия
Фишера. Способ перебора является достаточно трудоемким и связан с большим
объемом вычислительных работ. Практика построения многофакторных моделей
взаимосвязи показывает, что все реально существующие зависимости между
социально-экономическими явлениями можно описать, используя пять типов
моделей:
1. линейная: Y=A0+A1X1+….AkXk
2. степенная
3. показательная
4. параболическая
5. гиперболическая
Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации. Нелинейные формы зависимости приводятся к линейным путем линеаризации.
Важным этапом построения уже выбранного уравнения множественной
регрессии являются отбор и последующее включение факторных признаков.
Сложность формирования уравнения множественной регрессии заключается в том, что почти все факторные признаки находятся в зависимости один от другого.
Проблема размерности модели связи, т. е. определение оптимального числа
факторных признаков, является одной из основных проблем построения
множественного уравнения регрессии. С одной стороны, чем больше факторных
признаков включено в уравнение, тем оно лучше описывает явление. Однако
модель размерностью 100 и более факторных признаков сложно реализуема и
требует больших затрат машинного времени. Сокращение размерности модели за
счет исключения второстепенных, экономически и статистически несущественных
факторов способствует простоте и качеству ее реализации. В то же время
построение модели регрессии малой размерности может привести к тому, что
такая модель будет недостаточно адекватна исследуемым явлениям и процессам.
Проблема отбора факторных признаков для построения моделей взаимосвязи
может быть решена на основе эвристических или многомерных статистических
методов анализа.
Метод экспертных оценок как эвристический метод анализа основных макроэкономических показателей, формирующих единую междуна- , родную систему расчетов, основан на интуитивно-логических предпосылках, содержательно-качественном анализе. Анализ экспертной информации проводится на базе расчета и анализа непараметрических показателей связи: ранговых коэффициентов корреляции Спирмена, Кендалла и конкордации .
Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым "прямым методом". При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции . одновременно используется и обратный метод, т.е. , исключение факторов, ставших незначимыми на основе t-критерия Стьюдента. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существен и его включение в уравнение регрессии необходимо.
Если же при включении в модель факторного признака коэффициенты регрессии меняют не только величину, но и знаки, а множественный коэффициент корреляции не возрастает, то данный факторный признак признается нецелесообразным для включения в модель связи.
Сложность и взаимное переплетение отдельных факторов, обусловливающих исследуемое экономическое явление (процесс), могут проявляться в так называемой мультиколлинеарности. Под мультиколлинеарностью понимается тесная зависимость между факторными признаками, включенными в модель.
Наличие мультиколлинеарности между признаками приводит к:
• искажению величины параметров модели, которые имеют тенденцию к завышению;
• изменению смысла экономической интерпретации коэффициентов регрессии;
. слабой обусловленности системы нормальных уравнений;
. осложнению процесса определения наиболее существенных факторных признаков.
Одним из индикаторов определения наличия мультиколлинеарности между
признаками является превышение парным коэффициентом корреляции величины 0,8
.
Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.
Вопрос о том, какой из факторов следует отбросить, решается на основании качественного и логического анализов изучаемого явления.
Рекомендуем скачать другие рефераты по теме: диплом образец, реклама реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата