Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя
| Категория реферата: Рефераты по математике
| Теги реферата: новые сочинения, сочинение на тему
| Добавил(а) на сайт: Hudjakov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
aij(1) = aij - qi1a1j , bi(1) = bi - qi1b1.
2-й шаг. Целью этого шага является ислючение неизвестного x2 из уравнений с номерами i = 3, 4, …, n. Пусть a22(1) ? 0, где a22(1) – коэффициент, называемый главным (или ведущим) элементом 2-го шага. Вычислим множители 2-го шага
qi2 = ai2(1) / a22(1) (i = 3, 4, …, n)
и вычтем последовательно из третьего, четвертого, …, n-го уравнения системы второе уравнение, умноженное соответственно на q32, q42, …, qm2. В результате получим систему
a11x1 + a12x2 + a13x3 + … + a1nxn = b1 , a22(1)x2 + a23(1)x3 + … + a2n(1) = b2(1) , a33(2)x3 + … + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . .
. an3(2)x3 + … + ann(2)xn = bn(2) .
Здесь коэффициенты aij(2) и bij(2) вычисляются по формулам
aij(2) = aij(1) – qi2a2j(1) , bi(2) = bi(1) – qi2b2(1).
Аналогично проводятся остальные шаги. Опишем очередной k-й шаг. k-й шаг. В предположении, что главный (ведущий) элемент k-го шага akk(k–1) отличен от нуля, вычислим множители k-го шага
qik = aik(k–1) / akk(k–1) (i = k + 1, …, n)
и вычтем последовательно из (k + 1)-го, …, n-го уравнений полученной на предыдущем шаге системы k-e уравнение, умноженное соответственно на qk+1,k, qk+2,k, …, qnk.
После (n - 1)-го шага исключения получим систему уравнений
a11x1 + a12x2 + a13x3 + … + a1nxn = b1 , a22(1)x2 + a23(1)x3 + … + a2n(1)xn = b2(1) , a33(2)x3 + … + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . .
. . ann(n–1)xn = bn(n–1) .
матрица A(n-1) которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.
Обратный ход. Из последнего уравнения системы находим xn. Подставляя
найденное значение xn в предпоследнее уравнение, получим xn–1. Осуществляя
обратную подстановку, далее последовательно находим xn–1, xn–2, …, x1.
Вычисления неизвестных здесь проводятся по формулам
xn = bn(n–1) / ann(n–1),
xk = (bn(k–1) – ak,k+1(k–1)xk+1 – … – akn(k–1)xn) / akk(k–1), (k = n –
1, …, 1).
Необходимость выбора главных элементов. Заметим, что вычисление
множителей, а также обратная подстановка требуют деления на главные
элементы akk(k–1). Поэтому если один из главных элементов оказывыется
равным нулю, то схема единственного деления не может быть реализована.
Здравый смысл подсказывает, что и в ситуации, когда все главные элементы
отличны от нуля, но среди них есть близкие к нулю, возможен
неконтролируемый рост погрешности.
1.1.2. Метод Гаусса с выбором главного элемента по столбцу (схема частичного выбора). Описание метода. На k-м шаге прямого хода коэффициенты уравнений системы с номерами i = k + 1, …, n преобразуются по формулам
aij(k) = aij(k–1) - qikakj , bi(k) = bi(k–1) - qikbk(k–1) , i = k + 1, …, n.
Интуитивно ясно, что во избежание сильного роста коэффициентов системы и связанных с этим ошибок нельзя допускать появления больших множителей qik.
В методе Гаусса с выбором главного элементоа по столбцу гарантируется, что |qik| ? 1 для всех k = 1, 2, …, n – 1 и i = k + 1, …, n. Отличие этого варианта метода Гаусса от схемы единственного деления заключается в том, что на k-м шаге исключения в качестве главного элемента выбирают максимальный по модулю коэффициент aikk при неизвестной xk в уравнениях с номерами i = k + 1, …, n. Затем соответствующее выбранному коэффициенту уравнение с номером ik меняют местами с k-м уравнением системы для того, чтобы главный элемент занял место коэффициента akk(k-1). После этой перестановки исключение неизвестного xk производят, как в схеме единственного деления.
1.1.3. Метод Гаусса с выбором главного элемента по всей матрице (схема полного выбора). В этой схеме допускается нарушение естественного порядка исключения неизвестных.
На 1-м шаге мтода среди элементов aij определяют максимальный по модулю элемент ai1j1. Первое уравнение системы и уравнение с номером i1 меняют местами. Далее стандартным образом производят исключение неизвестного xi1 из всех уравнений, кроме первого.
Рекомендуем скачать другие рефераты по теме: скачать доклад на тему, отчет по практике.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата