Решение задач линейной оптимизации симплекс – методом
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему животные, как сделать шпаргалку
| Добавил(а) на сайт: Ефимия.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Отметим, что в двойственной задаче переменные yi могут быть и отрицательными.
Рассмотрим в качестве исходной задачу (2.12), (2.13). С учетом (7.1) и (7.7) запишем
С = (120, 100, 150, 0, 0, 0, 0, 0), B = (, , , , ),
.
Двойственная задача имеет вид
; (7.8)
(7.9)
8. Формирование оптимального решения двойственной задачи на основе теоремы о двойственности
Оказывается, что для задач (7.2) - (7.4) и (7.5), (7.6), называемых двойственной парой, справедлива следующая теорема.
Теорема (первая теорема о двойственности). Если одна из задач двойственной пары (7.2) - (7.4) и (7.5), (7.6) имеет решение, то другая задача также разрешима. При этом для любых оптимальных планов и (здесь Мх, Му – множества планов соответственно прямой и двойственной задач) задач (7.2) - (7.4) и (7.5), (7.6) имеет место равенство
.
Если линейная форма одной из задач не ограничена (для F(X) – сверху, для f(Y) - снизу), то другая задача не имеет ни одного плана.
Оптимальное решение двойственной задачи может быть найдено на основе следующего следствия из этой теоремы.
Следствие. Если вектор является оптимальным опорным планом задачи (7.2) - (7.4), то вектор (8.1), является оптимальным опорным планом задачи (7.5), (7.6).
Стоит отметить, что в ходе решения исходной задачи вторым алгоритмом, при каждом шаге вычисляется вектор . И если Х – оптимальный опорный план задачи (7.2) - (7.4), то в (m+1)-й строке, соответствующей основной таблице, находится решение задачи (7.5), (7.6).
Пусть двойственная задача имеет вид (7.8), (7.9).
Так как исходная задача (2.12), (2.13) имеет решение, то на основании рассмотренной теоремы о двойственности двойственная задача также разрешима.
Оптимальным опорным планом исходной является (см. п.4, п.6). При этом
;
; .
Вычислим
.
На основании следствия из теоремы о двойственности можно заключить, что является оптимальным планом двойственной задачи, при котором . Анализируя (m+1)-ю строку основной таблицы (см. табл. 6.3, шаг 5), можно убедиться в том, что оптимальный план двойственной задачи, сформированный на основе теоремы о двойственности, совпадает с оптимальным планом, найденном при решении исходной задачи вторым алгоритмом симплекс-метода. Это говорит о том, что оптимальный план задачи (7.8) - (7.9) найден верно.
9. Анализ результатов и выводы
В данной работе рассматриваются два способа решения исходной задачи линейного программирования.
Первый заключается в том, что сначала решается вспомогательная задача (L-задача), позволяющая построить начальный опорный план, затем на основе этого найденного плана решается исходная задача (определяется ее оптимальный план). Второй способ является объединением двух этапов и состоит в решении расширенной задачи (M-задачи), также приводящей к нахождению оптимального плана исходной задачи.
Рекомендуем скачать другие рефераты по теме: доклад по географии на тему, реферат предприятие.
Категории:
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата