Самоаффинные фрактальные множества II. Размерности длины и поверхности
| Категория реферата: Рефераты по математике
| Теги реферата: дипломные работы бесплатно, оформление курсовой работы
| Добавил(а) на сайт: Donat.
1 2 | Следующая страница реферата
Представляется соблазнительным попытаться измерить длину кривой с помощью измерительного циркуля, последовательно уменьшая его раствор, или измерить площадь поверхности с помощью все более и более мелкой триангуляции. Для обычных кривых такая процедура дает хороший результат. В то же время известно, что уже для обычных поверхностей (например, для цилиндра) возникают аномалии; основная аномалия проявляется в так называемом парадоксе площадей Шварца, который заслуживает широкой известности и будет обсуждаться ниже. Для самоподобных кривых эта процедура снова приводит к фрактальной размерности. Попытаемся использовать такую процедуру для самоаффинных фракталов и покажем, что размерности, к которым она приводит, отличаются от массовой и клеточной размерностей.
2. Измерение длины самоаффинных фрактальных кривых, являющихся графиками функций 2.1. Измерение длины с использованием «сосиски» Минковского дает локальную и глобальную размерности, совпадающие с DML и DMGСледуя Минковскому и Булигану, определим приближенную длину кривой В(), используя «сосиску» Минковского, содержащую все точки на расстоянии, меньшем чем, от данной точки кривой. Для обычной спрямляемой кривой и при << 1 В() = (2)-1 (площадь сосиски). Для самоподобной кривой (см. [2], с. 36) B()~1-D, для самоаффинной кривой площадь сосиски при малых ведет себя как N()-2 ~ H, и поэтому локальная размерность равна 2—Н. Глобальная размерность равна 1. Оба этих значения встречались в части I данной статьи.
2.2. Нахождение длины с помощью измерительного циркуля при фиксации последнего выхода кривой дает локальную и глобальную размерности, совпадающие с DML и DMGВ одном из многих методов нахождения длины спрямляемой кривой используется измерительный циркуль, перемещающийся вдоль кривой. На кривой могут быть узлы, т. е. кратные точки произвольного порядка; достаточно, чтобы точки кривой были упорядочены, например «во времени». Начнем с исходной точки р0. Первая точка Р1 будет первым выходом кривой из круга с центром в ро и радиусом и т. д. Если обозначить через L() длину возникающей ломаной линии, приближенно описывающей нашу кривую, то длина кривой будет lim 0 L().
Можно выбрать в качестве P1 точку последнего, а не первого выхода вдоль кривой. И можно также двигаться назад.
Для самоподобной кривой находим L() ~ 1-D, и снова по желанию можно отмечать либо первый, либо последний выход кривой.
Для наших самоаффинных кривых ситуация оказывается совершенно иная. Кроме локальной размерности при 0 имеется также глобальная размерность, которая, как мы увидим, равна 1. И локальная размерность, полученная при помощи измерительного циркуля, имеет два совершенно различных значения, одно для последних, а другое для первых выходов. Прежде чем двигаться дальше, заметим, что для самоподобных функций рассмотрение становится проще (а результаты не меняются), если круг с центром в точке Pk заменить квадратом.
Если воспользоваться этим обстоятельством, то рассмотрение последних выходов становится простым. Покроем нашу кривую (b''k)2-H квадратами со стороной (b")k<<1; это дает D>2—H. Далее добавим кольцо из 8 таких же квадратов вокруг каждой ячейки и тем самым увеличим сторону втрое. Ясно, что (b"k)2-H шагов циркуля с раствором 3(b")-k достаточно, чтобы пройти вдоль кривой, поэтому размерность, полученная с помощью измерительного циркуля, меньше 2—Н. Следовательно, она равна 2-H.
2.3. Нахождение длины с помощью измерительного циркуля при фиксации первых выходов дает «аномальные размерности». Локальное значение размерности при малых равно 1/Н. Эта величина совпадает с фрактальной размерностью фрактального следа, связанного с функцией. Для больших п размерность равна 1В этом разделе приведены результаты, полученные в работе [I].
При >> tс (например, когда единица измерения ВH достаточно мала) график по сути дела близок к горизонтальной линии. При передвижении измерительного циркуля вдоль кривой
он в основном остается параллельным оси t, и L() слабо меняется с изменением. Если считать, что L()~1-D, тогда то обстоятельство, что L() является константой, дает для глобальной размерности значение 1 независимо от Н.
Если, наоборот, << tc (например, когда единица измерения ВH велика), то ситуация оказываетя иной: измеритель, передвигающийся вдоль кривой, в основном остается параллельным оси В. В результате получаем размерность, равную 1/Н.
Это чрезвычайно странное значение может превышать 2 и является аномальным вдвойне: оно противоречит значению 2-Н, которое получалось при других локальных определениях фрактальной размерности. С другой стороны, те, кто знакомы с фрактальным броуновским движением, могут отождествить 1/Н с фрактальной размерностью следа (в некотором E-мерном евклидовом пространстве RE при Е > 1/Н) движения, для которого координаты Е представляют собой независимые реализации Вн(t).
В этом случае попытка использовать необычный путь для измерения фрактальной размерности для одного множества в действительности заканчивается измерением значения, которое все пути дают для некоторого другого множества.
2.4. Размерности, связанные с покрытием аффинными прямоугольникамиВ утом разделе мы хотим связать измерение длины с вопросами, обсуждавшимися в разд. 8, части I статьи. В обоих предельных случаях >> 1 или << 1 число шагов измерителя L()/для всех практических случаев равно числу прямоугольных ячеек высотой =(b"}k и шириной (b')-k, используемых для покрытия фрактала. При обычном определении размерности фрактала выбираются квадратные ячейки, и число ячеек находится как функция их диаметра. Аналогичную формулировку можно применить и для величины Z.()/, если в качестве диаметра прямоугольной ячейки выбрать ее большую сторону. В локальном случае наибольшей стороной является вертикальная, и мы приходим, как и в разд. 2.3, к размерности 1/Н. В глобальном случае наибольшей стороной является горизонтальная, так что размерность равна 1.
3. Измерение длины других самоаффинных кривых, в частности следов движения ПеаноК этому интересному случаю могут быть применены аргументы, аналогичные использованным в разд. 2.3.
Локальное значение. Использование измерительного циркуля раствором (b")-k << 1 потребует Nk шагов, и поэтому показатель для приближенного значения длины равен logb"(b"N-1)=1 -logb"N, так что размерность равна logb" N. В частности, в случае Пеано N = b'b" и размерность равна 1 + 1/H.
Глобальная размерность. Она равна logb'N и в случае Пеано принимает значение 1+ Н.
4. Парадокс площадей ШварцаТриангуляция обычных поверхностей оказывается делом гораздо более сложным, чем можно было бы ожидать. В частности, в конце XIX в. Герман Амандус Шварц показал, что для случая цилиндра единичного радиуса и единичной высоты безобидный на первый взгляд метод триангуляции может дать для площади боковой поверхности любую величину: от истинного значения 2 до бесконечности!
Поступим следующим образом: разделим цилиндр по высоте на п слоев плоскостями z=р/п (р—целое число больше нуля) и выделим на окружностях с четным номером уровня точки = (2q+1) /m (q—целое), а на окружностях с нечетным номером уровня — точки = 2q/m. Соединим каждую точку (z,) с точками (z 1/n, /m). Таким образом, боковая поверхность единичного цилиндра приближенно представлена 2mn равными треугольниками. Теперь, чтобы получить истинную площадь, кажется естественным сложить площади этих треугольников и затем произвольным образом независимо устремить n, m .
Прямое вычисление показывает, что для больших m эта площадь приближенно равна 2sqrt( [1 + (4/4)n2/m4] ). Если т , но n/m2 0, то это приближенное выражение действительно сходится к величине 2. Однако, если т и п = m2 (= const > 0), мы получим произвольное конечное значение, превышающее 2! И мы можем сказать, кроме того, что, выбирая п ~ m, > 2, можно добиться, чтобы приближенное значение площади возрастало как произвольная степень либо 1/т, либо 1/п, либо площади треугольника, пропорциональной 1/тп. Цилиндр оказывается похожим на фрактал! Его площадь неограниченно возрастает при таком способе измерения.
Причиной такого поведения является следующее обстоятельство: при переходе к пределу т/п мы используем треугольники, которые а) становятся все более и более узкими, т. е. имеют хотя бы один угол, стремящийся к нулю, и б) лежат в плоскостях, стремящихся стать перпендикулярно боковой поверхности цилиндра. При этом возникающая поверхность становится все более и более «волнистой» и все больше удаляется от истинной поверхности.
Реакция прагматика была бы следующей — избегать узких треугольников. Ответ математика: «парадокс площадей Шварца» относился к числу проблем, способствовавших .развитию современной математики. В частности, этот парадокс стимулировал Минковского дать корректные определения длины и площади через объемы все более тонких «сосисок» Минковского для кривых и все более тонких «шарфов» Минковского для поверхностей. Эти множества состоят из всех точек внутри -окрестности некоторой точки кривой или поверхности. Так, Минковский определяет площадь обычной поверхности как
lim (1/2) x (объем -шарфа). | ||
0 |
В отличие от треугольников все интервалы подобны друг другу, и поэтому для обычной кривой в плоскости аналога парадокса Шварца не существует. Его не существует также и для самоподобных фрактальных кривых; действительно, в [2] отмечено, что измерения длины с переменной точностью е могут быть проведены многими различными путями, но во всех случаях длина меняется по одному и тому же закону: пропорционально е1-0. Но для самоаффинных кривых, как показано в разд. 2.1—2.3, ситуация более сложная. Здесь длина растет как 1-D, но D = DBL при подходе Минковского и D = DCL > DBL при использовании измерительного циркуля. Может ли размерность D принимать значения, отличающиеся от этих двух величин?
5. Измерение площади самоаффинных фрактальных поверхностей, полученных из графиков функций 5.1. Площадь фрактального рельефа ВH (х, у), найденная с помощью «шарфа» МинковскогоМы возвращаемся к размерностям DBL и DBG.
5.2. Определение площади фрактального рельефа с помощью триангуляцииВыберем квадратные плитки с х=у = 1/b. Четыре вершины каждой плитки определяют четыре значения ВH и дают два способа аппроксимации небольшой части поверхности двумя «треугольниками-близнецами». Возьмем среднее из этих двух приближений для каждой ячейки и, кроме того, проведем усреднение по b2 ячейкам.
Рекомендуем скачать другие рефераты по теме: служба реферат, мировая экономика.
Категории:
1 2 | Следующая страница реферата