Шпоры по Вышке (ИГЭА, Препод Дыхта В.А.)
| Категория реферата: Рефераты по математике
| Теги реферата: реферат принципы, диплом купить
| Добавил(а) на сайт: Половов.
1
|Осн. понятия |Сходящиеся и |Экспонента или |Предел ф-ции в |Пределы ф-ции на|
|Грани числовых |расходящиеся |число е |точке |бесконечности |
|мн-в |посл-ти |Ф-ции одной |Свойства предела|Два |
|Числовые |Св-ва сходящихся|переменной |ф-ции в точке |замечательных |
|последовательнос|посл-тей |Обратные ф-ции |Односторонние |предела |
|ти |Теорема «Об | |пределы ф-ции в |Б/м ф-ции и их |
|Непр. ф-ции на |единственности | |т-ке: |сравнения |
|пр-ке |пределов» | |Предел ф-ции в |Непрерывные |
| |Теорема | |т-ке |ф-ции. |
| |«Сходящаяся | |Предел и |Непрерывность. |
| |посл-ть | |непрерывность | |
| |ограничена» | |функции | |
| |Теорема «О | |Предел. | |
| |сходимости | |Односторонний | |
| |монотон. | |предел. | |
| |посл-ти» | | | |
|1. Осн. понятия |4. Сходящиеся и |6. Экспонента |Предел ф-ции в |11. Пределы |
|Мат.модель – |расходящиеся |или число е |точке |ф-ции на |
|любой набор |посл-ти |Р-рим числ. |y=f(x) X |бесконечности |
|кр-ний; |Большое внимание|посл-ть с общим |опр. ( {xn} (X, |Они нужны для |
|неравенств и |уд-ся выяснению |членом |xn(x0 |исследования |
|иных мат. |вопроса: |xn=(1+1/n)^n (в |f(xn)(A,=> f(x) |поведения ф-ции |
|Соотношений, |обладает ли |степени n)(1) . |в т. x0 (при , |на переферии. |
|которая в |данная посл-ть |Оказывается, что|xn(x0) предел = |Опр. ф-ция f(x) |
|совокупности |сл-щим св-вом |посл-ть (1) |А |имеет предел |
|описывает |(сходимости) при|монотонно |А=lim(x(x0)f(x) |число А при x(+(|
|интересующий нас|неогранич. |возр-ет, |или f(x)(A при |если ( {xn} |
|объект. |Возрастании |ограничена |x(x0 |которая (к +( |
|Мн-во вещест. |номеров посл-ти |сверху и сл-но |Т-ка x0 может ( |соответствующая |
|чисел |эл-ты посл-ти |явл-ся |и ( мн-ву Х. |ей |
|разбивается: на |сколь угодно |сходящейся, | |последовательнос|
|рационал. и |близко |предел этой |Свойства предела|ть {f(xn)}(A в |
|иррац. Рац. – |приближаются к |пос-ти наз-ся |ф-ции в точке |этом случае мы |
|число, которое |некоторому числу|экспонентой и |1) Если предел в|пишем |
|можно |а или же этого |обозначается |т-ке сущ-ет, то |lim(x(+()f(x)=A.|
|представить в |св-ва нет. |символом |он единственный |Совершенно |
|виде p/q где p и|Опр Если для |е(2,7128… |2) Если в тке х0|аналогично с -(.|
|q – цел. числа. |любого ( >0 |Док-ть |предел ф-ции | |
|Иррац. – всякое |найдется такой |сходимость |f(x) |Опр. Будем |
|вещественное |номер N, для |посл-ти (1) |lim(x(x0)f(x)=A |говорить что |
|число, которое |любого n |Для док-ва |lim(x(x0)g(x)(B=|ф-ция f(x) имеет|
|не явл. |>N:(xn-a(< ( |введем вспом-ю |> то тогда в |пределом число А|
|рационал. |Все посл-ти |ф-цию |этой т-ке ( |при x(( {f(xn)} |
|Любое вещ. число|имеющие предел |y=(1+x)^1/x, x>0|предел суммы, |сходится к А |
|можно |наз-ся |Ясно что при |разности, |Бесконечные |
|представить в |сходящимися, а |знач. |произведения и |пределы ф-ции |
|виде бесконеч. |не имеющее его |x=1,1/2,1/3,…,1/|частного. |Вводятся как |
|десят. Дроби а, |наз-ся |n,… значение |Отделение этих |удобные |
|а1,а2…аn… где а |расходящимися. |ф-ции y |2-х ф-ций. |соглашения в |
|–люб. число, а | |совпадает с |а) |случае, когда |
|а1, а2 … аn |Связь сходящихся|соответствующими|lim(x(x0)(f(x)(g|конечные пределы|
|числа, приним. |посл-тей и б/м. |эл-ми (1). |(x))=A(B |не (-ют. |
|целые знач. |Дает сл. теорему|Док-м что ф-ция |б) |Р-рим на |
|Некоторые | |у монотонно |lim(x(x0)(f(x)(g|премере: |
|числовые |Теорема Для того|убывает и огран.|(x))=A(B |lim(x(o+)(1/x) |
|множества. |чтобы посл-ть xn|сверху => |в) |Очевидно не |
|Мн-ва – |имела пределом |монотонное возр.|lim(x(x0)(f(x):g|сущ-ет, т.к. для|
|первичное |число а |посл-ти (1) и |(x))=A/B |( {xn}(+о |
|понятие, на |необходимо, |ограниченность |г) lim(x(x0)C=C |посл-ть |
|уровне здравого |чтобы эл-ты этой|ее сверх. |д) |{f(xn)}={1/xn}, |
|смысла, его не |посл-ти можно |Поскольку lg x |lim(x(x0)C(f(x)=|а числ. посл-ть |
|возможно точно |было представить|явл-ся монотонно|C(A |сводятся к +(. |
|определить. |в виде xn=a+(n, |возр., но |Док-во xn(x0, ( |Поэтому можно |
|Для описания |где посл-ть |монотонное убыв.|lim(x(x0)f(x)=A |записать |
|мн-в единая |{(n}(0, т.е. |ф-ции у и ее |по опр. f(xn)(A|lim(x(o+)1/x=+( |
|символика, а |является б/м. |огранич. сверху |{f(xn)} |что говорит о |
|именно, если в |Док-во |эквивалентны |Односторонние |неограниченных |
|мн-во А входят |а) Допустим, что|том, что ф-ция |пределы ф-ции в |возрастаниях |
|только эл. х, |xn(a и укажем |lgy, которая |т-ке: |предела ф-ции |
|которые обладают|посл-ть (n |равняется |Опр. А - предел |при приближении |
|некоторым св-вом|удовл. равенству|1/хlg(1+x) (2) |ф-ции f(x) |к 0. |
|S(x), то тогда |xn=a+(n. Для |имеет те же |справа от точки |Аналогично с -(.|
|мн-во А |этого просто |самые св-ва, |х0, если f(x)(A | |
|описывается |положим (n=xn-a,|т.е. 01/|Формально это |употребляются в |
|Подмн-ва – если |растоянию от xn |x2( (lg(1+x2) |означает, что |качестве предела|
|А и В 2 мн-ва и |до а ( 0 => (n |(3). Огранич. |для любой |ф-ции в данной |
|все эл-ты мн-ва |б/м и из |сверху ( |посл-ти {xn}(x0,|т-ке лишь |
|А сод-ся в В, то|равенства |M:1/xlg(1+x)(lgM|вып-ся условие |условно и |
|А наз-ся |преобразования |(x>0 (4). |xn>x0, f(x)(A. |означают |
|подмн-вом В, А |определяю (n |Возьмем любую |Обозначим |например, что |
|В, если в В |получаем |лин. ф-цию вида |f(x0+0) и f(x0+)|если {xn}(x0 то |
|сод-ся эл-ты |xn=a+(n. |y=kx которая |lim(x(x0+0)f(x)(|{f(xn)}(((,( |
|отличные от | |превосходит | |12. Два |
|эл-тов мн-ва А, |Свойство б/м |lg(1+x) при всех|И также с |замечательных |
|то В строго шире|Если {xn},{yn}- |x>0. |минусами. |предела |
|А, то А наз-ся |любые посл-ти, |tg(1=(lg(1+x1))/|Признак ( |1) |
|собственным |то их сумма |x1 |предела |lim(x(0)sin/x=1 |
|подмн-вом В. |{xn+yn}, это |(1>(2=>tg(1>tg(2|Т-ма Для того | |
|А(В. А=В- мн-ва |есть пос-ть с | |чтобы f(x) имела|2) Явл. |
|совпадают. |общим членом |tg(2=(lg(1+x2))/|предел в т-ке х0|обобщением |
|Операции с |xn+yn. |x2 |необх., тогда в |известного |
|мн-воми А |Аналогично с |Поскольку (1>(2,|этой т-ке ф-ция |предела о |
|В=посл-ти. |частным и |это равносильно |совпадающ. Между|Справедливо сл. |
|– обьединение |умножением. |равенству (3). |собой одностор. |предельное |
|мн-в А и В. |Т-ма о св-вах |Поскольку |предел |соотношение: |
|А( В= пересечение|а) {xn}и{yn}-б/м|=> kx> |(1), которые |n=e (1) |
|мн-в А и В. |пос-ти, б/м |>lg(1+x) (x>0 |равны пределу |lim(n(0)(1+x)^1/|
|А В=дополн. к |разность и |внимания ф-ции у|Док-во. f(x) |t=1/x => при х(0|
|м-ву В во мн-ве |произведение |с пос-ть xn |имеет в т-ке х0 |t(( из предела |
|А |являются б/м |приходим к |предел А, тогда |(2) => lim(x(() |
|Числовые мн-ва |2) Произведение |нужному |f(x)(A |(1+1/x)^x=e (3) |
| |любой огранич. |утверждению. |независимо от |Док-во |
|R,N,Z,Q - |посл-ти на б/м |Число е явл-ся |того |1)x(+( n x:n=[x]|
|стандартные |являются б/м |неизбежным |приближается ли |=> n(x |
|обозначения мн-в|!О частном не |спутником |х к х0 по |1/(n+1)0 найдется |/n)^x( |
|(а,в] – |!Понятие б/б не |ф-цию y=e^x и ее|такое число В>0,|(1+1/n)^(n+1) |
|полуинтервал. |совпадает с |модификации. |для всех х |(4) |
|Окрестностью |неограниченной: |Пр-р: если |отличных от х0 и|Рассмотрим |
|т-ки х наз-ся |посл-ть может |ставка сл-ных % |(х-х0)о |вложенных |Теорема. Пусть |вытекает |
|верх. гранью |N:(n>N(xn-a( |
|мн-ва действит. |посл-тями |сверху числом |B/C |((х)((х)(0 при |
|чисел. |приводят к |b1. |Теорема также |х(х0 |
|3. Числовые |посл-тям также |{bn}-посл-ть |верна если х0 |Для того чтобы |
|последовательнос|имеющие пределы,|правых концов |явл. ((, ((, ( |различать б/м по|
|ти |причем: |монотонно не |Опр. Ф-ция f(x) |их скорости |
|Если для каждого|а) предел |возрастающей, |наз-ся |стремления к 0 |
|нат. числа n |lim(n(()(xn(yn)=|поэтому эти |непрерыной в |вводят сл. |
|определено |a(b |посл-ти явл. |точке х=х0, если|понятие: |
|некоторое |б) предел |сходящимися, |предел ф-ции и |1) Если |
|правило |lim(n(()(xn(yn)=|т.е. сущ-ют |ее значение в |отношение 2-х |
|сопоставляющее |a(b |числа |этой точке |б/м ((х)/((х)(0 |
|ему число xn, то|в) предел |с1=lim(n(()an и |равны, т.е. |при х(х0 то |
|мн-во чисел |lim(n(()(xn/yn)=|с2=lim(n(()bn =>|lim(x(x0)f(x)=f(|говорят что б/м |
|х1,х2, … ,хn, … |a/b, b(0 |c1=c2 => c - их|x0) |( имеет более |
|наз-ся числовой|Док-во: |общее значение. |Теорема Пусть |высокий порядок |
|последовательнос|а)xn(yn=(а+(n)((|Действительно |ф-ции f(x) и |малости чем (. |
|тью и |b+(n)=(a(b)+((n(|имеет предел |g(x) непрерывны |2) Если |
|обозначается |(n) Правая часть|lim(n(()(bn-an)=|в т-ке х0. Тогда|((х)/((х)(A(0 |
|{xn}, причем |полученная в |lim(n(()(bn)- |ф-ции f(x)(g(x),|при х(х0 |
|числа образующие|разности |lim(n(()(an) в |f(x)(g(x) и |(A-число), то |
|данную посл-ть |представляет |силу условия 2) |f(x)/g(x) также |((х) и ((х) |
|наз-ся ее эл-ми,|сумму числа a+b |o= |непрерывны в |наз-ся б/м |
|а эл-т хn общим |б/м посл-тью, |lim(n(()(bn-an)=|этой т-ке. |одного порядка. |
|эл-том посл-ти .|поэтому стоящая |с2-с1=> с1=с2=с |10. Предел. |3) если |
| |в левой части |Ясно что т. с |Односторонний |((х)/((х)(1 , то|
|!Порядок |xn+yn имеет |общая для всех |предел. |((х) и ((х) |
|следования |предел равный |отрезков, |Опр.Числом А |наз-ся |
|эл-тов оч. |a(b. Аналогично |поскольку (n |наз-ся предел |эквивалентными |
|важен, |др. св-ва. |an(c(bn. Теперь |f(x) в т-ке х0, |б/м (((х)~((х)),|
|перестановка |б) |докажем что она |если для любой |при х(х0. |
|хотя бы 2-х |xn(yn=(а+(n)((b+|одна. |окрестности А( |4) Если |
|эл-тов приводит |(n)=ab+(nb+a(n+(|Допустим что ( |окрестность |((х)/(^n(х)(А(0,|
|к др. посл-ти. |n(n |другая с‘ к |(х0):(x(окрестно|то ((х) наз-ся |
|Основные способы|(n(b – это |которой |сти (x0) |б/м n-ного |
|задан. посл-ти: |произведение |стягиваются все |выполняется |порядка |
|а) явный, когда |const на б/м |отрезки. Если |условие |относительно |
|предъявляется |а((n(0, (n(n(0, |взять любые не |f(x)(окрестности|((х). |
|ф-ла позволяющая|как произведение|пересекающиеся |. |Аналогичные |
|по заданному n |б/м. |отрезки с и с‘, |Теорема Все |определения для |
|вычислить любой |=> поэтому в |то с одной |определения |случаев: х(х0-, |
|эл-т n, т.е. |правой части |стороны весь |предела |х(х0+, х(-(, |
|xn=f(n), где f- |стоит сумма |«хвост» посл-тей|эквивалентны |х(+( и х((. |
|некоторая ф-ция |числа а(b+ б/м |{an},{bn} должен|между собой. |14. Непрерывные |
|нат. эл-та. |посл-ть. По т-ме|нах-ся в |Опр. Число А |ф-ции. |
|б) неявный, при |О связи |окрестностях |называется |Непрерывность. |
|котором задается|сходящихся |т-ки с‘‘(т.к. an|пределом ф-ции |Опр. f(x) |
|некоторое |посл-тей в б/м |и bn сходятся к |f(x) справа от |непрерывны Х0 и |
|рекуррентное |посл-ти в правой|с и с‘ |т.х0(правым |при этом ее |
|отношение и |части xn(yn |одновременно). |предело f(x0)) |предел в этой |
|несколько первых|сводится к a(b |Противоречие |если f(x)(A при |т-ке сущ-ет и |
|членов посл-ти. |Практический |док-ет т-му. |х(х0, х>x0 |равен знач. |
|Пример: |вывод состоит в |Принцип |Формально это |ф-ции в этой |
|а) xn=5n x1=5, |том, что нахожд.|вложенных |означает, что |т-ке, т.е. |
|x2=10 |пределов |отрезков |для любой |lim(x(x0)f(x)=f(|
|б) x1=-2 xn=4n-1|посл-тей |Т-ма. Любая |посл-ти |x0)-непрерывност|
|–3, n=2,3… |заданных сл. |пос-ть вложенных|сходящейся к х0 |ь ф-ции в т-ке. |
|х2=-11, х3=-47 |выражениями |отрезков |при xn>x0 |Из определения |
| |можно сводить к |содержит |выполняется |вытекает что в |
|Ограниченные |более простым |единств. т-ку |условие f(xn)(A |случае |
|последовательнос|задачам |с(всем отрезкам |Запись: f(x0+o),|непрерывности |
|ти(ОП) |вычисления lim |посл-ти |f(x0+ ). |ф-ции в данной |
|Посл-ть {xn} |от составляющих |одновременно, к |lim(x(x0+o)f(x) |т-ке вычитание |
|наз-ся огран. |этого выр-ния |которой они |где запись |пределов |
|сверху(снизу), |Посл-ть {xn} |стягиваются. |x(x0+o как раз |сводится к |
|если найдется |наз-ся возр., |Док-во. {an} |означает |вычит. знач. |
|какое-нибудь |если |пос-ть левых |стремление к х0 |ф-ции в данной |
|число {xn} M(m) |x1xn>xn+1>|монотонно не |f(x0-o);f(x0-) |вносить в |
|Посл-ть {xn} |…; невозр., если|возр. и |Теорема. Для |аргумент ф-ции. |
|наз-ся |x1(x2(…(xn(xn+1(|ограничена снизу|того чтобы ф-ция|Геометрически |
|неогранич., если|… |а1, поэтому эти |f(x) имела |непрерывность |
|для любого |Все такие |посл-ти сходящ.,|предел в точке |ф-ции в т-ке х0 |
|полного числа А |посл-ти наз-ся |т.е. ( числа |х0 необходимо и |означает что ее |
|сущ-ет эл-т хn |монотонными. |c1=lim(n(()an и |достаточно когда|график в этой |
|этой посл-ти, |Возр. и убыв. |c2=lim(n(()bn. |в этой т-ке |т-ке не имеет |
|удовлетворяющий |наз-ся строго |Докажем что |ф-ция имеет |разрыва. Если |
|неравенству |монотонными |с1=с2 и сл-но их|совпадающие |обозначить через|
|(xn(>А. |Монотонные |общая знач. |между собой |(у приращение |
| |посл-ти |может обозначить|одностороние |ф-ции, т.е. |
| |ограничены с |через с. Действ.|пределы |(у=f(x0+(x)-f(x0|
| |одной стороны, |имеется предел |(f(x0+)=f(x0-)) |) (приращение |
| |по крайней мере.|lim(n(()(bn-an)=|значение которые|ф-ции в т. х0). |
| |Неубывающие |lim(n(()bn( |равны пределу |«(» - символ |
| |ограничены |lim(n(()an=c2-c1|ф-ции, т.е. |приращения. |
| |снизу, например |=c ясно что с |f(x0+)= |Приращение |
| |1 членом, а не |общая для всех |f(x0-)=lim(x(x0)|аргумента в т-ке|
| |возрастыющие |отрезков |f(x)=A |х0 это |
| |ограничены |поскольку для ( |Док-во |соответствует |
| |сверху. |n an(c(bn. |а) допустим |тому, что |
| |Теорема «О |Осталось |ф-ция имеет в |текущая т. х, то|
| |сходимости |доказать |точке х0 предел |условие |
| |монотон. |единство данной |равный А, тогда |непрерывности в |
| |посл-ти» |т-ки (от |f(x)( А |т-ке х0 |
| |Всякая |противного). |независимо от |записывается сл.|
| |монотонная |Допустим есть |того, |образом |
| |посл-ть явл-ся |c‘(c к которой |приближается ли |lim((x(0)(y=0~ |
| |сходящейся, т.е.|стягиваются все |х к х0 по |(у(0 (1‘‘). Если|
| |имеет пределы. |отрезки. Если |значению > x0 |в т-ке х0 ф-ция |
| |Док-во Пусть |взять любые |или 0 |значению перем. |2. члены которые|ф-ции ф-ции в |
| |вып-ся нер-во ( |У то в этом |нах-ся справа от|т-ке х0, т.е. |
| |xm(пусть m- это |случае говорят, |х0 {х‘‘n}; |f(x0+)=lim(x(x0,|
| |n с |что задана ф-ция|x’n(x0-o |x>x0)f(x)=f(x0),|
| |крышкой):xm>x*-(|1-й переменной. |x’’n(x0+o, т.к. |то ф-ция f(x) |
| |при ( n>m => из |Y=f(x); x |односторонние |наз-ся непр. |
| |указанных 2-х |–аргумент |пределы ( и |справа в т-ке |
| |неравенств |независ. |равны, то |х0. |
| |получаем второе |перемен., y- |f(x‘n)(A и |Аналогично при |
| |неравенство |зав. пер. |f(x‘‘n)(A |вып-нии усл. |
| |x*-((xn(x*+( при|X=Df=D(f) |поэтому посл-ть |f(x0-)=lim(x(x0,|
| |n>m эквивалентно|y={y;y=f(x),x(X}|значений ф-ций |x | |справа, так и |
| | |огр. сн.; | |слева. |
| | |f(x)(M, (x(X=> | |f(x0-)=f(x0+)=f(|
| | |огр. св. | |x0) |
| | | | |Опр. Ф-ция f(x) |
| | |Обратные ф-ции | |непрерывна на |
| | |Если задано | |некотором пр-ке |
| | |правило по | |D, если в каждой|
| | |которому каждому| |т-ке этого пр-ка|
| | |значению y(Y | |при этом, если |
| | |ставится в | |пр-ток D |
| | |соответствие ( | |содержит |
| | |ед. знач. х, | |граничную т-ку, |
| | |причем y=f(x), | |то будем |
| | |то в этом случае| |подразумевать |
| | |говорят, что на | |соотв. одностор.|
| | |мн-ве Y | |непр. ф-ции в |
| | |определена ф-ция| |этой т-ке. |
| | |обратная ф-ции | |Пример Р-рим |
| | |f(x) и | |степенную |
| | |обозначают такую| |производст. |
| | |ф-цию x=f^-1(y).| |ф-цию |
| | | | |Q=f(k)=k^1/2 |
| | | | |Q-объем выпуска |
| | | | |продукции, к – |
| | | | |объем капитала. |
| | | | |D(f)=R+=>f(0)=0 |
| | | | |и очевидно f(0+)|
| | | | |( и равно 0 => |
| | | | |что данная ф-ция|
| | | | |непр. на своей |
| | | | |обл. опр-ния. |
| | | | |Большинство |
| | | | |ф-ций исп-мых в |
| | | | |эк-ке непр. |
| | | | |Например непр. |
| | | | |ф-ции означает, |
| | | | |что при малом |
| | | | |изменении |
| | | | |капитала мало |
| | | | |будет меняться и|
| | | | |выпуск пр-ции |
| | | | |((Q(0 при (k(0).|
| | | | |Ф-ции которые не|
| | | | |явл. непр. |
| | | | |наз-ют |
| | | | |разрывными |
| | | | |соотв. т-ки в |
| | | | |которых ф-ция не|
| | | | |явл. непр. |
| | | | |наз-ся т-кой |
| | | | |разрыва |
|Классификация |Дифференцировани|Выпуклые и |Применение 1й |Теорема |
|т-ки разрыва |е ф-ций |вогнутые ф-ции |пр-ной в исслед.|Больцано-Вейершт|
|Непр. ф-ции на |Пр-ные и |Т-ки перегиба |ф-ций |расса |
|пр-ке |дифференциалы |Выпуклость и |Т-ма Ферма Т-ма |Теорема |
|Теорема |выс. Порядков. |вогнутость. |Коши |Больцано-Коши |
|ВЕЙЕРШТРАССА |Теорема Ферма |Б/б пол-ти |Интервалы |Теорема |
| |Теорема Ролля |Гладкая ф-ция |монотонности |Вейерштрасса |
| |Теорема |Эластичность |ф-ции | |
| |Логранджа |ф-ций |Т-ма Логранджа. | |
| |Теорема Коши | |Т-ма Ролля Т-ма | |
| |Правило Лопиталя| |Тейлора Т-ма | |
| | | |Коши Правило | |
| | | |Лопиталя. | |
| | | |Производная | |
| | | |обратной ф-ции | |
|15. |16. |Выпуклые и |Применение 1й |Теорема |
|Классификация |Дифференцировани|вогнутые ф-ции |пр-ной в исслед.|Больцано-Вейершт|
|т-ки разрыва |е ф-ций |Для хар-ки |ф-ций |расса Из любой |
|Все т-ки р-рыва |Центральная идея|скорости возр. |Все применения |огран. посл-ти |
|делятся на 3 |диффер. ф-ций |или убыв. ф-ции,|базируются на |можно выбрать |
|вида: т. |явл-ся изучение |а также крутезны|опред-нии |сход. |
|устранимого |гладких ф-ций |гр-ка ф-ции на |пр-ной, как |подпосл-ть. |
|р-рыва; точки |(без изломов и |участке |предела |Док-во |
|р-рыва 1-го , и |р-рывов кривые) |монотонности |разностного |1. Поскольку |
|2-го рода. |с помощью |вводится понятия|отношения, а |посл-ть |
|а) если в т-ке |понятия пр-ной |вогн. вып-ти |также на сл-щей |ограничена, то (|
|х0 ( оба |или с помощью |ф-ции на |т-ме. |m и M, такое что|
|односторонних |линейных ф-ций |интервале, |Т-ма Ферма. Если|( m(xn(M, ( n. |
|предела, которые|y=kx+b обладает |частности на |диф. на |(1=[m,M] – |
|совпадают между |простейшими |всей числ. |интервале (a,b) |отрезок, в |
|собой f(x0+)= |наглядн. |приямой. |f(x) имеет в |котором лежат |
|f(x0-), но ( |ф-циями; у=k‘ =>|Пр-р. Пусть |т-ке ч0 |все т-ки |
|f(x0), то такая |k>0 то у возр. |ф-ция явл-ся |локальный |посл-ти. |
|т-ка наз-ся |при всех х, |пр-ной ф-цией |экстремум, то |Разделим его |
|точкой |k0. |которых пр-ная |половина, где |
|Если по ф-ции f |окр-тях т-ки х0,|На инт. От (0,a)|ф-ции f(x) |лежит |
|построить новую |таким приращения|ф-ция возр. все |обращается в 0 |бесконечное |
|ф-цию положив |(х эл-нт. |быстрее. Его |наз-ся крит. |число т-к |
|для нее знач. |Составим соотв. |можно р-ривать, |т-ми f(x). Из |посл-ти. Делим |
|f(x0)= |ему приращения |как этап |т-мы Ферма => |его пополам. По |
|f(x0-)=f(x0+) и |ф-ции т-ки х0. |образования |экстремум надо |краней мере в |
|сохранить знач. |(y=(f(x0)=f(x0+(|фирмы вначале |искать только |одной из |
|в др. т-ках, то |x)-f(x0) |которого выпуск |через крит. |половинок отр. |
|получим исправл.|Образуем |растет медленно,|т-ки. |(2 нах-ся |
|f. |разностное |поскольку первые|Т-ма Коши. Пусть|бесконечное |
|б) если в т-ке |отношение |рабочие не |ф-ции f(x) и |число т-к |
|х0 ( оба |(y/(x=(f(x0)/(x |прошли период |g(x) непрерывны |посл-ти. Эта |
|1-стороних |(1) (это |адаптации, но с |на [a,b] и диф. |половина - (3. |
|предела f(x0(), |разностное |теч. времени |на (a,b). Пусть |Делим отрезок (3|
|которые не равны|отношение явл. |эффект привл. |кроме того, |… и т.д. |
|между собой |ф-цией (х, т.к. |доп. раб. |g‘(x)(0, тогда (|получаем посл-ть|
|f(x0+)(f(x0-), |х0-фиксирована, |рабочих |т-ка c((a,b) |вложенных |
|то х0 наз-ся |причем при (х(0 |становится все |такая, что |отрезков, длинны|
|т-кой р-рыва |мы имеем дело с |больше, и соотв.|справедлива ф-ла|которых |
|первого рода. |неопр. 0/0). |ув-ся крутизна |(f(b)-f(a))/(g(b|стремятся к 0. |
|в) если в т-ке |Опр. Пр-ной |графика. На |)-g(a))=f‘(c)/g‘|Согластно о т-ме|
|х0 хотя бы 1 из |ф-ции y=f(x) |((,a) ф-ция |(c) |о вложенных |
|односторонних |наз-ся предел |возр. все медл. |Интервалы |отрезках, ( |
|пределов ф-ции |разностного |и гр. становится|монотонности |единств. т-ка С,|
|не ( или |отношения 1 (при|все более |ф-ции |кот. принадл. |
|бесконечен, то |условии если он |пологой. а – это|Т-ма. Пусть f(x)|всем отрезкам |
|х0 наз-ся т-кой |(), когда (х(0. |пороговое знач. |диффер. На |(1, какую-либо |
|р-рыва 2-го |Производная это |числ. раб. силы |интервале (a,b),|т-ку (n1. В |
|рода. |предел отношения|начиная с |тогда |отрезке (2 |
|При исслед. |приращения в |которого привл. |справедливы сл. |выбираю т-ку |
|Ф-ции на непр. |данной т-ке к |доп. раб. силы |утверждения f(x)|xn2, так чтобы |
|классификации |приращению |начиная с |монотонно возр. |n2>n1. В отрезке|
|возможных т-к |аргумента при |которого привл. |(убывает) на |(3 … и т.д. В |
|р-рыва нужно |усл., что |раб. силы дает |интервале (a,b) |итоге пол-ем |
|применять во |посл-ть ( к 0. |все меньший |тогда, когда |посл-ть xnk((k. |
|внимание сл. |Эта производная |эффект в объемке|f‘(x)(0 на |Теорема |
|замечания: |обозначается |вып-ка. А(х) |интервале (a,b) |Больцано-Коши |
|1) Все |через df(x0)/dx |возр. f‘(x)>0 |и f‘(x)>0 |Пусть ф-ция |
|элементарные |или f‘(x0), у‘ |(x(0, но на |(f‘(x) |или же речь идет|как (0;() f‘ |х( интерв. |принимает зн-ния|
|при исл. |о пр-ной в любой|убыв., а в т-ке |монотонно |равных знаков, |
|элементарных |текущей т-ке х. |а-max. По |убывает, |тогда ( т-ка с (|
|ф-ций нужно |Итак согласно |критерию |касательная |(a,b) в которой |
|обращать |определению |монотонности это|имеет тупой угол|ф-ция обращается|
|внимание на |f‘(x0)=lim((x(0)|означает на |наклона f‘(x1) тогда |Док-во |
|огранич-ти) |док-ть рав-во |f‘‘(x0)=0 и 2-я |ф-ла |Предположим что |
|Док-во |(3). Если пр-ная|пр-ная меняет |(7)=(f(b)-f(a))/|ф-ция не |
|использует |( то из |знак при |(b-a)=f‘(c) (7‘)|ограничена. |
|опр-ние на языке|определения (2) |переходе через |– ф-ла конечных |Возьмем целое |
|( и (. Если f |и связи предела |х0=> в любой |приращений |пол-ное n, т.к. |
|непр. в т-ке х0 |с б/м =>, что ( |т-ке перегиба |Логранджа. |ф-ция не |
|то взяв любое |б/м ф-ция (((х) |f‘(x) имеет |(f(b)-f(a))/(b-a|ограничена, то |
|(>0 можно найти |такая что |локальный |)=f‘(c) (1) |найдется |
|(>0 |(f(x0)/(x=f‘(x0)|экстремум. |Док-во сводится |xn([a,b], такое |
|(f(x)-f(x0)(n. |
|при (х-х0( C((A,B) (|y‘=kx^(k-1) ( |-x0) – линейная |Ф-ла (1) наз-ся |С одной стороны |
|c((a,b):f(c)=C |k(N. Док-м для |ф-ция х, который|ф-лой конечных |f(xnk) стремится|
|f(c)=f(c‘)=f(c‘‘|к=0 исходя из |не превосходит |приращений. |к опр. числу, а |
|). |опр-ния пр-ной. |f(x) и не меньше|Т-ма Ролля. |с др. стороны |
|IV)Теорема о |Возьмем ( т-ку х|f(x) в случае |Пусть ф-ция f(x)|стремится к (, |
|прохожд. непр. |и дадим |вогнутости |удовл. сл. усл. |пришли к |
|ф-ции через 0. |приращение (х |неравенства |А)Непрерывна на |противоречию, |
|Если f(x) непр. |составим |хар-щие |[a,b] |т.к. мы |
|на отрезке (a,b)|разностное |выпуклость |Б) Дифференц. на|предположим, что|
|и принимает на |отношение |(вогнутость) |(a,b) |ф-ция не |
|концах этого |(у/(х=(х+(х)^2-x|через диф. |В) принимает на |ограничена. |
|отрезка значение|^2/(x=2х+ (х => |f(x)(f(x0)+ |коцах отрезков |Значит наше |
|разных знаков |lim((x(0)(y/(x=2|f‘(x0)(x-x0) ( |равные значения |предположение не|
|f(a) f(b), то ( |x=y‘. В дейст-ти|x,x0((a;b) f |f(a)=f(b), тогда|верно. |
|т-ка с((a,b). |док-ная ф-ла |вогнута на |на (a,b) ( т-ка | |
|Док-во |р-раняется для |(а,b). Хорда |такая что | |
|Одновременно |любых к. |выше (ниже), чем|f‘(c)=0, т.е. | |
|содержит способ |3)Пр-ная |график для вып. |с-крит. т-ка. | |
|нах-ния корня |экспон-ной |ф-ций (вогн.) |Док-во. Р-рим | |
|ур-ния f(x0)=0 |ф-ции, у=е^x => |линейная ф-ция |сначала, | |
|методом деления |y‘=e^x. В данном|kx+b, в |тривиальный | |
|отрезка пополам.|случае |частности |случай, f(x) | |
|f(d)=0 c=d Т-ма |(y/(x=(e^x+(x-e^|постоянна, явл. |постоянная на | |
|доказана. |x)/(x=e^x(e^(x-1|вып. и вогнутой.|[a,b] | |
|Пусть f(d)(0 |)/ (x. Одеако | |(f(a)=f(b)), | |
|[a,d] или [d,b] |предел дробного |Б/б пол-ти |тогда f‘(x)=0 ( | |
|ф-ция f |сомножителя = 1.|Посл-ть {xn} |x ( (a,b), любую| |
|принимает | |наз-ся б/б, если|т-ку можно взять| |
|значение разных |4)y=f(x)=(x(=(x,|для ( пол-ного |в кач-ве с. | |
|знаков. Пусть |x>0;-x,xN вып-ся |она непрер. на | |
|через [a1,b1]. |легко нах-ся, |нер-во (xn(>A |этом отрезке, то| |
|Разделим этот |причем при |Возьмем любое |по т-ме | |
|отрезок на 2 и |y‘=1при x>0 |число А>0. Из |Вейерштрасса она| |
|проведем |y‘=-1 при xA |экстрем. на этом| |
|первого шага |x=0 пр-ная не (.|получаем n>A. |отрезке и max и | |
|док-ва в итоге |Причина с геом |Если взять N(А, |min. Поскольку f| |
|или найдем |т-ки зрения явл.|то ( n>N вып-ся |принимает равные| |
|искомую т-ку d |невозможность |(xn(>A, т.е. |знач. в гранич. | |
|или перейдем к |проведения |посл-ть {xn} |т-ках, то хотя | |
|новому отрезку |бесисл. мн-во |б/б. |бы 1- экстр. – | |
|[a2,d2] |кассат. к гр-ку |Замечание. Любая|max или min | |
|продолжая этот |ф-ции. Все |б/б посл-ть явл.|обязательно | |
|процесс мы |кассат. имеют |неограниченной. |достигается во | |
|получим посл-ть |угол от [-1,+1],|Однако |внутр. т-ке. | |
|вложения |а с аналит. т-ки|неогранич. |с((a,b) (в | |
|отрезков |зрения означает |Посл-ть может и |противном случае| |
|[a1,b1]>[a2,b2] |что прдел 2 не (|не быть б/б. |f=const), то по | |
|длинна которых |при x0=0. При |Например |т-ме Ферма, | |
|(a-b)/2^n(0, а |(x>0 |1,2,1,3,1,…,1,n…|тогда f‘(c)=0, | |
|по т-ме о вл-ных|(y/(x=(x/(x=1=>l|не явл. б/б |что и | |
|отрезков эти |im((x(0,(x>0)(y/|поскольку при |требовалось | |
|отрезки |(x=1 А левый |А>0 нер-во |д-ть. | |
|стягиваются к |предел разн-го |(xn(>A не имеет |Т-ма Тейлора. «О| |
|т-ке с. Т-ка с |отн-ния будет |места ( xn с |приближении | |
|явл. искомой |–1. Т.к. |нечет. номерами.|гладкой ф-ци к | |
|с:f(c)=0. |одностор. пред. | |полиномам» | |
|Действительно |Не совпадают |Гладкая ф-ция |Опр. Пусть ф-ция| |
|если допустить, |пр-ная не (. В |Сл. ф-ция f(x) |f(x) имеет в | |
|что f(c)(0 то по|данном случае ( |тоже явл. |т-ке а и | |
|св-ву сохр. |одностор. |гладкой, т.е. f‘|некоторой ее | |
|знаков в |пр-ная. |( и непрерывна |окрестности | |
|некоторой ( |Опр. |причем имеет |пр-ные порядка | |
|окрестности, |Правой(левой) |место сл. ф-ла |n+1. Пусть х - | |
|т-ке с f имеет |пр-ной ф-ции в |F‘(x)=f‘(((x))((|любое значение | |
|тот же знак что |т-ке х0, наз-ся |‘(x) (4). |аргумента из | |
|и значение f(c) |lim отношения |Используя ф-лу |указанной | |
|между тем |(2) при усл. что|(4) получаем |окрестности, | |
|отрезки [an,bn] |(х(0+((х(0-). |y‘=(lnf(a))‘=f‘(|х(а. Тогда между| |
|с достаточно N |Из связи |x)/f(x) (5) – |т-ми а и х | |
|попабают в эту |вытекает |логарифмической |надутся т-ка ( | |
|окрестность и по|утвержд., если |пр-ной. Правая |такая, что | |
|построению f |f(x) дифференц. |часть это |справедлива ф-ла| |
|имеет разный |в т-ке х0, то ее|скорость |Тейлора. | |
|знак на концах |одностор. пр-ная|изменения у |f(x)=f(a)+f‘(a)/| |
|этих отрезков. |также ( и не |(ф-ция f(x)) |1!(x+a)+ | |
|Непр. ф-ции на |совпадает |приходится на |f‘‘(a)/2!(x+a)^2| |
|пр-ке |f‘(x0-) и |ед-цу абсол. |+f^(n)(а)/n!+f^(| |
|f непр. в т-ке |f‘(x0+) обратно |значения этого |n+1)(()/(n+1)!(x| |
|х0 => f непрер. |для ( пр-ной |пок-ля поэтому |-a)^(n+1). | |
|в т-ке х0 и |f‘(x0) |логарифм. |Док-во. Сводится| |
|f(x0)(0 => f |необходимо, |Произв. наз-ют |к Роллю путем | |
|непр. на [a,b] и|чтобы прав. и |темпом прироста |введения вспом. | |
|f(x)(f(b)=0 |лев. пр-ные |показателя y или|переменной g(x).| |
|(f(x)(f(b)>0 в |совпад. между |f(x). Пусть | | |
|окр-ти х0) => ( |собой. В этом |известна |g(x)=f(x)-f(a)-f| |
|с((a,b). f(c)=0 |случае они не |динамика |‘(x)(x-a)-…-1/n!| |
|сл-но 2 св-ва |совпад. |изменения цены |(f^n(x)(x-a)^n-1| |
|непр. ф-ции на |17. Пр-ные и |на некотором |/(n+1)!(x-a)^n+1| |
|отрезке |дифференциалы |интервале, |((. По т-ме | |
|обоснованны. |выс. Порядков. |причем P(t) |Роляя ( т-ка с | |
|Т-ма 1(о огран. |Пр-ная f‘(x) – |гладкая ф-ция. |из (a,b), такая | |
|непр. ф-ции на |первого порядка;|Что можно |что g(c)=0 | |
|отрезке). Если |f‘‘(x) – |назвать темпом |(=f^(n+1)(c) | |
|f(x) непр. на |второго; |роста этой |Правило | |
|[a,b], тогда |f‘‘‘(x)-третьего|ф-ции, при t=R. |Лопиталя. | |
|f(x) огран. на |; |Темп |Пусть ф-ция f(x)| |
|этом отрезке, |fn(x)=(f(n-1)(x)|роста(приросту. |и g(x) имеет в | |
|т.е. ( |)‘. Пр-ные |Пр-р y=e^(x. |окр. т-ки х0 | |
|с>0:(f(x)((c |начиная со |Найдем темп |пр-ные f‘ и g‘ | |
|(x((a,b). |второй наз-ся |прироста. |исключая | |
|Т-ма 2( о ( |пр-ными выс. |f‘/f=темп |возможность саму| |
|экстр. непр. |порядка. |прироста=(e^(x/e|эту т-ку х0. | |
|ф-ции на отр.). |Дифференциал |^(x=(. |Пусть lim(х((х | |
|Если f(x) непр. |выс. порядков |Экспонициальная |)=lim(x((x)g(x)=| |
|на [a,b], тогда |dy= f‘(x)dx – |ф-ция имеет |0 так что | |
|она достигает |диф. первого |постоянный темп |f(x)/g(x) при | |
|своего экстр. на|порядка ф-ции |прироста. |x(x0 дает 0/0. | |
|этом отрезке, |f(x) и |Эластичность |lim(x(x0)f‘(x)/g| |
|т.е. ( т-ка max |обозначается |ф-ций |‘(x) ( (4), | |
|X*:f(x*)(f(x) |d^2y, т.е. |Опр. Пусть |когда он | |
|(x([a,b], т-ка |d^2y=f‘‘(x)(dx)^|гладкая ф-ция |совпадает с | |
|min |2. Диф. |y=f(x) описывает|пределом | |
|X_:f(x_)(f(x) |d(d^(n-1)y) от |изменение |отношения ф-ции | |
|(x([a,b]. |диф. d^(n-1)y |экономической |lim(x(x0)f(x)/g(| |
|Теорема |наз-ся диф. |переменной у от |x)= | |
|ВЕЙЕРШТРАССА. |n-ного порядка |эк. пер. х. |lim(x(x0)f‘(x)/g| |
|Эти теремы |ф-ции f(x) и |Допустим f(x)>0 |‘(x) (5) | |
|неверны если |обознач. d^ny. |=> имеет смысл |Док-во. | |
|замкнутые |Теорема Ферма. |лог. пр-ная. |Возьмем ( т-ку | |
|отрезки заменить|Пусть ф-ция f(x)|Эл-ностью ф-ции |х>х0 и | |
|на др. пр-ки |определена на |f(x) или у |рассмотрим на | |
|Контрпример 1. |интервале (a,b) |наз-ся сл-щая |[x0;x] вспом | |
|f(x)=1/2 на |и в некоторой |вел-на опред-мая|ф-цию арг. t | |
|(0;1] ( f – |т-ке х0 этого |с помощью лог. |h(t)=f(t)-Ag(t),| |
|неогр. на (0;1] |интервала имеет |пр-ной. |если t([x0;x], | |
|хотя и |наибольшее или |Ef(x)=x(f‘(x)/f(|т.к. удовл. | |
|непрерывны. |наименьшее знач.|x)=x(lnf(x))‘ |этому св-ву в | |
|Контрпример 2. |Тогда если в |(6). Выясним эк.|окр-ти т-ки х0, | |
|f(x)=x; на (0;1)|т-ке х0 ( |смысл этого |а т-ку х мы | |
|f(x) – непр. |пр-ная, то она =|показателя для |считаем | |
|inf(x((0;1))x=0,|0, f‘(x0)=0. |этого заменим в |достаточно | |
|но т-ки |2)Теорема Ролля.|(6) пр-ную ее |близкой к х0. | |
|x_((0;1):f(x_)=0|Пусть на отрезке|разностным |Ф-ция h | |
|, т-ки x*, хотя |[a,b] определена|отношением |непрерывна на | |
|sup(x((0;1))x=1 |ф-ция f(x) |(f(x0)/(x и |[x0;x], | |
|Док-во т-мы 1. |причем: f(x) |будем иметь |поскольку | |
|Используем метод|непрерывна на |Ef(x)(x((f(x)/(x|lim(t(x0)h(t)=li| |
|деления отрезка |[a,b]; f(x) диф.|)/f(x)=((f(x)/f(|m(t(x0)[f(t)-Ag(| |
|пополам. |на (a,b); |x))/((x/x). В |t)]=lim(t(x0)-A | |
|Начинаем от |f(a)=f(b). Тогда|числителе стоит |lim(t(x0)g(t)=0=| |
|противного; f |( т-ка с((a,b), |относит. Прирост|h(0)=> непр. | |
|неогр. на [a,b],|в которой |ф-ции f в т-ке |t=x0 По т-ме | |
|разделим его, |f‘(c)=0. |x, в знаменателе|Логранджа | |
|т.е. тогда |3)Теорема |относ. прир. |(x0,x)( | |
|отрезки |Логранджа. Пусть|аргумента. => |c:h‘‘(c)=0 | |
|[a;c][c;b] f(x) |на отрезке [a,b]|эл-ность ф-ции |Производная | |
|неогр. |определена f(x),|показывает на |обратной ф-ции | |
|Обозн. [a1,b1] и|причем: f(x) |сколько % |Т-ма. Для диф. | |
|педелим отрез. |непр. на [a,b]; |изменяется |ф-ции с пр-ной, | |
|[a2,b2], где |f(x) диф. на |пок-ль y=f(x) |не равной нулю, | |
|f-неогр. |[a,b]. Тогда ( |при изменении |пр-ная обратной | |
|Продолжая |т-ка c((a,b) |перем. х на 1%. |ф-ции равна | |
|процедуру |такая, что |Эластичность – |обратной | |
|деления неогр. |справедлива ф-ла|пок-ль реакции |обратной | |
|получаем послед.|(f(b)-f(a))/b-a=|1-й переменной |величине пр-ной | |
|влож. отрезки |f‘(c). |на изменение |данной ф-ции. | |
|[an;bn] котор. |4)Теорема Коши. |другой. |Док-во. Пусть | |
|оттяг. к т-ке d |Пусть ф-ции f(x)|Пр-р. р-рим |ф-ция y=f(x) | |
|(d=c с |и g(x) непр. на |ф-цию спроса от |диф. и | |
|надстройкой) из |[a,b] и диф. на |цены, пусть |y‘x=f‘(x)(0. | |
|отрезка [a,b], |(a,b). Пусть |D=f(p)=-aP+b – |Пусть (у(0 – | |
|общее для всех |кроме того, |линейная ф-ция |приращение | |
|отр. Тогда с |g`(x)(0. Тогда (|спроса, где а>0.|независимой | |
|одной стороны |т-ка с((a,b) |Найдем |переменной у и | |
|f(x) неогр. в |такая, что |эластичность |(х – | |
|окр-ти т-ки d на|справедл. ф-ла |спроса по цене. |соответствующее | |
|конц. отрезка |(f(b)-f(a))/(g(b|Ed(P)=P(D‘/D=P((|приращение | |
|[an,bn], но с |)-g(a))=f‘(c)/g‘|-a)/(-aP+b)=aP/(|обратной ф-ции | |
|др. стороны f |(c). |aP-b)=> эл-ность|x=((y). Напишем | |
|непр. на [a,b] и|Правило |линейной ф-ции |тождество: | |
|=> в т-ке d и по|Лопиталя. |не постоянна |(x/(y=1:(y/(x | |
|св-ву она непр. |Раскрытие 0/0. | |(2) Переходя к | |
|в некоторой |1-е правило | |пределу в рав-ве| |
|окрестности d. |Лопиталя. Если | |(2) при (у(0 и | |
|Оно огран. в d |lim(x(a)f(x)= | |учитывая, что | |
|=> получаем |lim(x(a)g(x), то| |при этом также | |
|против. |lim(x(a)f(x)/g(x| |(х(0, получим: | |
|Поскольку в |)= | |lim((y(0)(x/(y=1| |
|любой окр-ти |lim(x(a)f‘(x)/g‘| |:lim((x(0)(y/(x | |
|т-ки d нах-ся |(x), когда | |=> x‘y=1/y‘x. | |
|все отрезки |предел ( | |Где х‘у – пр-ная| |
|[an;bn] с |конечный или | |обратной ф-ции. | |
|достаточно |бесконечный. | |Производная | |
|большим 0. |Раскрытие (/(. | |обратной ф-ции | |
|Док-во т-мы 2. |Второе правило. | |Т-ма. Для диф. | |
|Обозначим E(f) –|Если | |ф-ции с пр-ной, | |
|множиством |lim(x(a)f(x)= | |не равной нулю, | |
|значений ф-ии |lim(x(a)g(x)=(, | |пр-ная обратной | |
|f(x) на отр. |то | |ф-ции равна | |
|[a,b] по предыд.|lim(x(a)f(x)/g(x| |обратной | |
|т-ме это мн-во |)= | |обратной | |
|огран. и сл-но |lim(x(a)f‘(x)/g‘| |величине пр-ной | |
|имеет конечные |(x). Правила | |данной ф-ции. | |
|точные грани |верны тогда, | |Док-во. Пусть | |
|supE(f)=supf(x)=|когда | |ф-ция y=f(x) | |
|(при |x((,x(-(,x(+(,x(| |диф. и | |
|х([a,b])=M(-().|0(, (-(, 0^0, | |приращение | |
|Для опр. докажем|1^(, (^0. | |независимой | |
|[a,b] f(x) |Неопр. 0(, (-( | |переменной у и | |
|достигает макс. |сводятся к 0/0 и| |(х – | |
|на [a,b], т.е. (|(/( путем | |соответствующее | |
|х*:f(x)=M. |алгебраических | |приращение | |
|Допустим |преобразований. | |обратной ф-ции | |
|противное, такой|А неопр. 0^0, | |x=((y). Напишем | |
|т-ки не ( и |1^(, (^0 с | |тождество: | |
|сл-но f(x) x‘y=1/y‘x. | |
|согластно т-ме 1| | |Где х‘у – пр-ная| |
|g(x)- огран. | | |обратной ф-ции. | |
|т.е. ( c>0 | | | | |
|!0 | | | | |
|1(c(M-f(x)) => | | | | |
|f(x) (M-1/c | | | | |
|(x([a,b] | | | | |
|Однако это | | | | |
|нер-во | | | | |
|противор., т.к. | | | | |
|М-точная верхн. | | | | |
|грань f на [a,b]| | | | |
|а в правой части| | | | |
|стоит “C” | | | | |
|Следствие: если | | | | |
|f(x) непр. | | | | |
|[a,b]тогда она | | | | |
|принимает все | | | | |
|знач. заключ. | | | | |
|Между ее max и | | | | |
|min, т.е. | | | | |
|E(f)=[m;M], где | | | | |
|m и M –max и min| | | | |
|f на отрезке. | | | | |
Скачали данный реферат: Колдаев, Симона, Нюхалов, Горбунков, Voronin, Султанов.
Последние просмотренные рефераты на тему: реферат по философии, контрольные работы, шпаргалки по уголовному, пяточные шпори.
Категории:
1