Современные качественные исследования устойчивости
| Категория реферата: Рефераты по математике
| Теги реферата: антикризисное управление, шпаргалки по истории
| Добавил(а) на сайт: Uspenskij.
1 2 3 | Следующая страница реферата
Современные качественные исследования устойчивости
И.А. Колесникова
Российский университет дружбы народов
О вариационности некоторых ДУЧП с отклоняющимися аргументами
Исследована задача существования вариационных принципов для дифференциальных уравнений с отклоняющимися аргументами вида
1. Постановка задачи. Пусть N – оператор, заданный в области D(N) линейного нормированного пространства U над полем действительных чисел R, а область значений R(N) принадлежит линейному нормированному пространству V над полем R, т.е.
В дальнейшем всюду предполагается, что в каждой точке
существует производная Гато оператора N, определяемая формулой
(1)
Решается задача существования вариационных принципов для заданных ДУЧП с отклоняющимися аргументами вида
(2)
где -ограниченная область в, с кусочногладкой границей
в предположении достаточной гладкости всех рассматриваемых функций.
Зададим область определения оператора N равенством
(3)
Здесь - заданные функции, - неизвестная функция. Числа зависят соответственно от . Если - четны, то При нечетном полагаем
Обозначим
Введем классическую билинейную форму вида где (4)
Будем говорить, что уравнение (2) допускает прямую вариационную формулировку на множестве D(N), относительно билинейной формы (4), если существует функционал FN: D(FN )=D(N)—>R такой, что
Функционал FN называется потенциалом оператора N, а N – градиентом функционала FN. Записывают N=gradфFN. Оператор N называется потенциальным на множестве D(N) относительно Ф.
Обозначая через замыкание области , будем предполагать, что - выпуклое множество, , для любых фиксированных элементов функция
Как известно [2., стр.15], необходимым и достаточным условием потенциальности оператора N на множестве D(N) относительно заданной формы является условие симметричности
Искомый функционал в этом случае имеет вид:
где F0 произвольный фиксированный элемент из R.
Рекомендуем скачать другие рефераты по теме: реферат роль, сочинение рассуждение на тему.
Категории:
1 2 3 | Следующая страница реферата