Теория групп — наука о совершенстве
| Категория реферата: Рефераты по математике
| Теги реферата: allbest, сочинение рассказ
| Добавил(а) на сайт: Лобов.
Предыдущая страница реферата | 1 2 3
Если G — группа, X — множество и задан гомоморфизм φ : G → SymX, то говорят, что группа G действует на множестве X. Если Ker(φ) = {e}, то действие называется точным. Для «облегчения» обозначений мы будем отождествлять g с его образом gφ и для произвольного x X его образ относительно gφ будем записывать xg. Введем отношение эквивалентности ~ на X по правилу: элементы x, y X являются эквивалентными, если существует такой g G, что xg = y. Классы эквивалентности называются орбитами группы G. Говорят, что группа G действует транзитивно (а представление является транзитивным), если существует лишь одна орбита. Гомоморфизм φ : G → SymX называется подстановочным представлением группы G (именно из-за термина «подстановочное представление» термин «группа перестановок» считается неудачным, так как термин «перестановочное представление» имеет другое значение). Если Ker(φ) = {e}, то представление называется точным.
Рассмотрим теперь произвольную группу G и ее подгруппу H. Группа G действует на множестве смежных классов по подгруппе H умножением справа: (Hg1)g2 = H(g1g2). Таким образом, существует транзитивное представление φ : G → SymG/H. Если H не содержит отличных от единичной нормальных подгрупп группы G, то это представление является точным. В частности, если H = {e} то представление G → SymG/{e} = SymG всегда является точным и называется регулярным представлением группы G. Таким образом, любую группу можно рассматривать как группу подстановок. Оказывается, любое транзитивное представление группы G можно получить таким образом.
для понимания дальнейшего текста необходимо знание университетского курса алгебры
Следующий пример групп возникает из векторных пространств. Пусть V — векторное пространство над полем F (я не буду давать определение векторного пространства и поля, примером векторного пространства является плоскость, а примером поля — множество рациональных чисел относительно сложения и умножения). Множество невырожденных линейных преобразований векторного пространства V образует группу и называется общей линейной группой (обозначается GL(V)). Легко проверить, что векторные пространства одинаковой размерности n над одним и тем же полем изоморфны пространству строк длины n, а множество невырожденных линейных преобразований совпадает с множеством невырожденных матриц. При этом общая линейная группа записывается в виде GLn(F). На самом деле, данный пример не является, строго говоря, новым, поскольку GL(V) ≤ SymV. Однако важностью данного класса групп обусловлено его выделение в отдельный пример. Гомоморфизм φ : G → GLn(F) называется линейным представлением группы G над полем F степени n, а пространство V называется G-модулем. Группа симметрий шара, о которой упоминалось во введении, совпадает с группой всех линейных преобразований трехмерного пространства, сохраняющих длину векторов, называемую общей ортогональной группой.
Третий пример групп возникает следующим образом. Пусть X = {x1, x2, ...} — некоторый алфавит (конечный или бесконечный). Пополним его формальными символами X–1 = {x1–1, x2–1, ...} и рассмотрим множество слов в алфавите X X–1. Введем преобразования:
(1)
вычеркивание стоящих рядом символов xixi–1 или xi–1xi;
(2)
добавление в любое место слова подслов xixi–1 или xi–1xi.
Два слова u, v назовем эквивалентными, если существует цепочка преобразований типа (1) или (2), переводящих одно слово в другое. На множестве классов эквивалентности зададим операцию умножения приписыванием одного слова в конец другому. Тогда мы получим группу, называемую свободной группой и обозначаемую через F[X], а элементы этой группы принято называть словами. Универсальность данной конструкции делает свободные группы незаменимыми при изучении формальных языков (например, языков программирования), а также различных других задач из теории кодирования, распознавания и т. д. Термин «свободная» обусловлен тем, что если у нас есть произвольная группа G и существует такое ее подмножество M, что M = G, то мы можем рассмотреть множество слов X с условием |X| = |M| и тогда существует гомоморфизм φ : F[X] → G. Ядро гомоморфизма Ker(φ) порождается некоторым множеством слов R и запись группы G в виде G = < X|R > называется заданием группы определяющими и порождающими соотношениями. Пожалуй, это самый абстрактный способ задания группы и потому самый сложный. Мы не будем приводить здесь примеров групп, заданных таким образом.
Заключение
На этом нам бы хотелось закончить первую часть знакомства с теорией групп. Все замечания, пожелания, отзывы будут с благодарностью прочтены автором этой заметки. Если данная тема вызовет интерес, то, возможно, появится продолжение, с обзором наиболее значимых (по мнению автора) результатов, с формулировкой наиболее известных задач и изложением некоторых методов и приемов, используемых при изучении групп.
Скачали данный реферат: Эрдели, Kijak, Zheglov, Караев, Парфений, Луковников.
Последние просмотренные рефераты на тему: вирусы реферат, сочинение, методы курсовой работы, решебник по математике 6.
Категории:
Предыдущая страница реферата | 1 2 3