Типовые задачи по матанализу
| Категория реферата: Рефераты по математике
| Теги реферата: здоровый образ жизни реферат, реферат обслуживание
| Добавил(а) на сайт: Савватимов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
3)Точки пересечения с осями.ОУ:х=0,у=…(х;у)
ОХ: у=0,х=…(х;у)
4)Находим производ f’(x)=….
5)Приравниваем производ к нулю и
находим критич точки: f’(x)=0, ……=0
х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.
Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.
Х (-беск;x1) x1 (х1;х2) x2 (x2;+беск)
f”(x) - 0 + 0 -
f(x) … …
min max
f(x1)=…; f(x2)=….
На промеж (-беск;х1):f(x)=…<0 и т.д.
6) В точке х1=…производ сменила знак с минуса на плюс, значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.
7) Т.к. в точках x1=.., x2=..фун-я определена, то она возростает на промежетке (x1;x2) и убывает на промеж (-беск;х1)$(x2;+беск).
СТРОИШЬ ГРАФИК
Ответ: все полученные значения.
Решить методом интервалов.
Решите нер-во: …><0
Решение:
1)Рассмотрим функцию и решим ее методом интервалов ...><0.
2)Д(у)=…и ОДЗ
3)Находим нули фун-и f(x)=0, …..=0
x1=…,x2=…-эти точки разбивают числовую прямую на промежутки в каждом из которых фун-я сохраняет свой знак в силу непрерывности.
+ x1 - x2 +
Рекомендуем скачать другие рефераты по теме: курсовики скачать бесплатно, страхование реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата