Жидкие кристаллы, история открытия жидких кристаллов, структура, типы и их применение
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная по русскому языку, реферат образование
| Добавил(а) на сайт: Lagoshin.
Предыдущая страница реферата | 1 2 3 4
5. Анизотропия физических свойств
Анизотропия физических свойств — основная особенность жидких кристаллов. Поскольку основным структ урным признаком жидких кристаллов является наличие ориентационного порядка, обусловленного анизотропной формой молекул, то естественно, что все их свойства, так или иначе, определяются степенью ориентационного упорядочения. Количественно степень упорядоченности жидкого кристалла определяется параметром порядка S, введенным В.И. Цветковым в 40-х годах:
S = 0,5 á( 3cos2q – 1)ñ (2)
где q - угол между осью индивидуал ьной молекулы жидкого кристалла и преимущественным направлением всего ансамбля, определяемым директором n (угловые скобки означают усреднение по всем ориентац иям молекул). Легко понять, что в полностью разупорядоченной изотропно-жидкой фазе S = 0, а в полностью тве рдом кристалле S = 1. Параметр порядка жидкого кристалла лежит в пределах от 0 до 1. Именно существование ориентационного порядка обусловливает анизотропию всех физических свойств жидких кристаллов. Так, анизотропная форма молекул каламитиков определяет появление двойного лучепреломления ( Dn) и диэлектрической анизотропии ( De), величины которых могут быть выражены следующим образом:
Dn|| = n|| – n^ и De|| = e|| – e^ (3)
где n ||, n^ и e||, e^ — показатели преломления и диэлектрические постоянные соответственно, измеренные при параллельной и перпендикулярной ориентации длинных осей молекул относительно директора. Значения Dn для ЖК-соединений обычно ве сьма велики и меняются в ш ироких пределах в зависимости от их химического строения, достигая иногда величины порядка 0,3-0,4. Величина и знак De зависят от соотношения между анизотропией поляризуемости молекулы, величиной постоянного дипольного момента m, а также от угла межд у направлением дипольного момента и длинной молекулярной осью. Примеры двух ЖК-соединений, характериз ующихся положительной и от рицательной величиной D e, приведены ниже:
Нагревание жидкого кристалла, понижая его ориентационный порядок, сопровождается монотонным снижением значений Dn и D e, так что в точке исчезновения ЖК-фазы при Тпр анизотропия свойств полностью исчезает.
В то же время именно анизотропия всех физических характеристик жидкого кристалла в сочетании с низкой вязкостью этих соединений и позволяет с высокой легкостью и эффект ивностью осу ществлять ориентацию (и переориентацию) их мо лекул под действием небольших "возмущ ающих" факторов (электрические и магнитные поля, механическое напряжение), существенно изменяя их структуру и свойства. Именно поэтому жидкие кристал лы оказались незаменимыми электрооптически – активными средами, на основе которых и было создано новое поколение так называемых ЖК-индикаторов.
6. Применение
Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света. (У холестерически-нематических жидких кристаллов эта способность очень велика.) На всем этом основаны многочисленные применения жидких кристаллов. Например, зависимость цвета от температуры используется для медицинской диагностики. Нанося на тело пациента некоторые жидкокристаллические материалы, врач может легко выявлять затронутые болезнью ткани по изменению цвета в тех местах, где эти ткани выделяют повышенные количества тепла. Температурная зависимость цвета позволяет также контролировать качество изделий без их разрушения. Если металлическое изделие нагревать, то его внутренний дефект изменит распределение температуры на поверхности. Эти дефекты выявляются по изменению цвета нанесенного на поверхность жидкокристаллического материала.
Тонкие пленки жидких кристаллов, заключенные между стеклами или листками пластмассы, нашли широкое применение в качестве индикаторных устройств (прикладывая низковольтные электрические поля к разным частям соответствующим образом выбранной пленки, можно получать видимые глазом фигуры, образованные, например, прозрачными и непрозрачными участками). Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном. Сравнительно недавно было получено углеродное и полимерное волокно на основе жидкокристаллических матриц.
Список литературы
1. Чандрасекар С. Жидкие кристаллы - М.: Мир, 1980 – 344 с.
2. Пикин С.А., Блинов Л.М. Жидкие кристаллы. - М.: Наука, 1982. – 280 с.
3. Чистяков И.Г. Жидкие кристаллы. – М.: Наука, 1966. – 272 с.
4. www.itc.ua
5. www.russian-globe.com
6. www.3dnews.ru
7. http://mp.ustu.ru
8. www.cultinfo.ru
9. http://dk.compulenta.ru
10. www.radioland.net.ua
Скачали данный реферат: Изотов, Лисов, Sevast'jan, Царёв, Гущин, Филонилла.
Последние просмотренные рефераты на тему: шпоры по экономике, шпаргалки по экономическому, сочинение отец, сочинение сказка.
Категории:
Предыдущая страница реферата | 1 2 3 4