Золотое сечение
| Категория реферата: Рефераты по математике
| Теги реферата: классификация реферат, сочинение 3
| Добавил(а) на сайт: Сократ.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Перейдем теперь от кроликов к числам и рассмотрим следующую числовую последовательность: u1, u2 … un в которой каждый член равен сумме двух предыдущих, т.е. при всяком n>2 un=un-1+un-2. Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно. Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его. Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Ф могут стать более понятными, если показать отношения нескольких пеpвых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее: 1:1 = 1.0000, что меньше фи на 0.6180 2:1 = 2.0000, что больше фи на 0.3820 3:2 = 1.5000, что меньше фи на 0.1180 5:3 = 1.6667, что больше фи на 0.0486 8:5 = 1.6000, что меньше фи на 0.0180 По мере продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим приближением к недостижимому Ф. Рекомендуем скачать другие рефераты по теме: дипломная работа скачать бесплатно, реферат скачать без регистрации. Категории:Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |