Золотое сечение
| Категория реферата: Рефераты по математике
| Теги реферата: реферат народы, книга изложение
| Добавил(а) на сайт: Гарф.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Перейдем теперь от кроликов к числам и рассмотрим следующую числовую последовательность: u1, u2 … un в которой каждый член равен сумме двух предыдущих, т.е. при всяком n>2 un=un-1+un-2. Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно. Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его. Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Ф могут стать более понятными, если показать отношения нескольких пеpвых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее: 1:1 = 1.0000, что меньше фи на 0.6180 2:1 = 2.0000, что больше фи на 0.3820 3:2 = 1.5000, что меньше фи на 0.1180 5:3 = 1.6667, что больше фи на 0.0486 8:5 = 1.6000, что меньше фи на 0.0180 По мере продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим приближением к недостижимому Ф. Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте. Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1 : 1.618=0.618). Hо это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение – бесконечная дpобь, у этого соотношения также не должно быть конца. При делении каждого числа на следующее за ним через одно, получаем число 0.382 1:0.382=2.618 Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235 ,2.618 ,1.618,0.618,0.382,0.236.Упомянем также 0.5.Все они играют особую роль в природе и в частности в техническом анализе. Рекомендуем скачать другие рефераты по теме: реферати українською, скачать бесплатный реферат без регистрации. Категории:Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |