Computers and Health
| Категория реферата: Рефераты по медицине
| Теги реферата: матершинные частушки, военные рефераты
| Добавил(а) на сайт: Екатерина.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
More recent controversy surrounds very low frequency (VLF) and extremely low frequency (ELF) electromagnetic radiation produced by video displays' horizontal and vertical deflection circuits, respectively. Researchers have reported a number of ways that electromagnetic fields can affect biological functions, including changes in hormone levels, alterations in binding of ions to cell membranes, and modification of biochemical processes inside the cell. It is not clear, however, whether these biological effects translate into health effects.
Several epidemiological studies have found a correlation between VDT use and adverse pregnancy outcomes, whereas other studies found no effect. The most recent analysis, published this year by NIOSH, found no increased risk of spontaneous abortions associated with VDT use and exposure to electromagnetic fields in a survey of 2,430 telephone operators. This study, which measured actual electromagnetic field strength rather than relying on retrospective estimates, seems the most trustworthy to date. The authors note, however, that they surveyed only women between 18 and 33 years of age and did not address physical or psychological stress factors.
A 1990 Macworld article by noted industry critic, Paul Brodeur, proposed
that users maintain the following distances to minimize VLF and ELF
exposure:
. 28 inches or more from the video screen
. 48 inches or more from the sides and backs of any VDTs.
Although these guidelines seem overly cautious, a fundamental principle is
that magnetic field strength diminishes rapidly with distance. Users could, for example, select fonts with larger point sizes to permit working farther
from the screen. Remember that magnetic fields penetrate walls.
Over-reaction to ELF and VLF radiation can also compromise ergonomics. In a
campus computer lab, for example, all displays and keyboards were angled
thirty degrees from the front of desktops to reduce the radiation exposure
of students behind the machines. The risks of poor working posture in this
case appear to be greater than the radiation risks.
A final form of radiation, static electric, can cause discomfort by bombarding the user with ions that attract dust particles, leading to eye and skin irritations. Anti-static pads, increasing humidity, and grounded glare screens are effective remedies for these symptoms.
A continuing process
Massive computerization of offices, laboratories, dormitories, and homes
represents a fundamental change in the way many of us work and communicate.
It would be surprising if there were no adverse effects from such profound
changes. It would also be surprising if all policy debates were based on
sound scientific evidence, rather than parochial politics and media
exposes. But, as University of Pennsylvania bioengineering professor
Kenneth Foster has written, "One difficulty is that 'safety,' if considered
to be the absence of increased risk, can never be demonstrated. A hazard
can be shown to exist; absence of hazard cannot."
To monitor research and develop institutional guidelines, the University of
Pennsylvania has created a Task Force on Computing in the Workplace, with
representatives from the Offices of Environmental Health and Safety, Fire
and Occupational Safety, Information Systems and Computing, Radiation
Safety, Purchasing, University Life as well as staff and faculty from the
Wharton School and Schools of Engineering, Medicine and Nursing. Interested
readers are welcome to contact the authors for information on the Task
Force and its work.
Until more conclusive research becomes available, individuals, departments, and institutions will have to weigh the evidence and make their own
decisions about protective measures to minimize the risks of computing.
And, in our opinion, the information technology managers and their vendor
partners who provided the leadership to computerize our campuses, now owe
it to their colleagues to work with epidemiology and ergonomics experts to
create computer-intensive environments that are both productive and
healthful.
Avoiding carpal tunnel syndrome: A guide for computer keyboard users
Carpal tunnel syndrome (CTS) is a painful, debilitating condition. It
involves the median nerve and the flexor tendons that extend from the
forearm into the hand through a "tunnel" made up of the wrist bones, or
carpals, and the transverse carpal ligament. As you move your hand and
fingers, the flexor tendons rub against the sides of the tunnel. This
rubbing can cause irritation of the tendons, causing them to swell. When
the tendons swell they apply pressure to the median nerve. The result can
be tingling, numbness, and eventually debilitating pain.
CTS affects workers in many fields. It is common among draftsmen, meatcutters, secretaries, musicians, assembly-line workers, computer users, automotive repair workers, and many others. CTS can be treated with steroids, anti-inflammatories, or physical therapy, or with surgery to loosen the transverse carpal ligament. Recovery of wrist and hand function is often, but not always, complete.
Causes
Like many skeletomuscular disorders, CTS has a variety of causes. It is
most often the result of a combination of factors. Among these are:
Genetic predisposition. Certain people are more likely than others to get
CTS. The amount of natural lubrication of the flexor tendons varies from
person to person. The less lubrication, the more likely is CTS. One study
has related the cross-sectional shape of the wrist, and the associated
geometry of the carpal tunnel, to CTS. Certain tunnel geometries are more
susceptible to tendon irritation.
Health and lifestyle. People with diabetes, gout, and rheumatoid arthritis are more prone than others to develop CTS, as are those experiencing the hormonal changes related to pregnancy, menopause, and the use of birth control pills. Job stress has also been linked to an increased likelihood of CTS. And CTS seems to be more frequent among alcoholics.
Repetitive motion. The most common cause of CTS that's been attributed to the workplace is repetitive motion. When you flex your hand or fingers the flexor tendons rub against the walls of the carpal tunnel. If you allow your hand time to recover, this rubbing is not likely to lead to irritation. The amount of recovery time you need varies from fractions of a second to minutes, depending on many circumstances, including the genetic and health factors mentioned above, as well as the intensity of the flexing, the weight of any objects in your hand, and the extent to which you bend your wrist during flexing.
Trauma. A blow to the wrist or forearm can make the tendons swell and cause or encourage the onset of CTS.
Prevention
Computer keyboard users can take several steps to lower their chances of
developing CTS. Some of these center around the configuration of the
workplace, or "ergonomics." Others have to do with human factors.
Ergonomics. Proper seating is crucial to good ergonomics. The height of your seat and the position of your backrest should be adjustable. The chair should be on wheels so you can move it easily. Arm rests on the chair, though optional, are often helpful.
Table height. To adjust the chair properly, look first at the height of the table or desk surface on which your keyboard rests. On the average, a height of 27-29 inches above the floor is recommended. Taller people will prefer slightly higher tables than do shorter people. If you can adjust your table, set your waist angle at 90 degree, then adjust your table so that your elbow makes a 90 degree angle when your hands are on the keyboard.
Wrist angle. If your keyboard is positioned properly your wrists should be
able to rest comfortably on the table in front of it. Some keyboards are so
"thick" that they require you to bend your hands uncomfortably upward to
reach the keys. If so, it will help to place a raised wrist rest on the
table in front of the keyboard. A keyboard that requires you to bend your
wrists is a common cause of CTS among computer users.
Elbow angle. With your hands resting comfortably at the keyboard and your upper arms vertical, measure the angle between your forearm and your upper arm (the elbow angle). If it is less than 90 degree, raise the seat of your chair. If the angle is greater than 90 degree, lower the seat. Try to hold your elbows close to your sides to help minimize "ulnar displacement" - the sideways bending of the wrist (as when reaching for the "Z" key).
Waist angle. With your elbow angle at 90 degree, measure the angle between
your upper legs and your spine (the waist angle). This too should be about
90 degree. If it is less than 90 degree, your chair may be too low (and
your knees too high). Otherwise, you may need to alter the position of the
backrest or adjust your own posture (nothing provides better support than
sitting up straight). (Note: If making your waist angle 90 degree changes
your elbow angle, you may need to readjust the height of your chair or
table.)
Feet. With your elbows and waist at 90 degree angles, your feet should rest comfortably flat on the floor. If they don't, adjust your chair and table height and repeat the steps above. If your table isn't adjustable and your feet don't comfortably reach the floor, a raised footrest can help. Otherwise, you may need a different table.
Рекомендуем скачать другие рефераты по теме: контрольная работа 6, решебник по математике 6.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата