Интерпретации существования в математике
| Категория реферата: Рефераты по медицине
| Теги реферата: казахстан реферат, сочинение
| Добавил(а) на сайт: Аксиния.
1 2 | Следующая страница реферата
Интерпретации существования в математике
Гутнер Г.
1 Основные стратегии доказательства существования
Важной задачей, которую мы должны решить, проводя исследование онтологии математического дискурса, состоит в выяснении тех традиционных способов, которыми математика устанавливает существование своих предметов. Для этого следует обратить внимание на математические предложения, утверждающие о чем-либо, что оно "существует". Рассмотрение доказательств таких предложений позволяет понять, в каком смысле употреблено в нем это слово. Способ доказательства существования проясняет, прежде всего, интерпретацию существования в том или ином утверждении.
Если попытаться разобрать основные математические тексты (т.е. тексты, производимые математиками разного класса и уровня и читаемые в сообществе, имеющем к математике какое-либо отношение), то при самом поверхностном анализе можно увидеть три способа доказательства существования и, соответственно, три способа определить онтологический статус предмета исследования.
Первый (и, возможно, наиболее распространенный) способ доказательства состоит в непосредственном построении объекта, в существовании которого предстоит убедиться. В качестве классических областей применения такого рода доказательств принято указывать евклидову геометрию, алгебру и, отчасти, теорию чисел [18]. Однако, важно понимать, что его употребление вполне естественно и для вполне "нефинитных" областей, например, для функционального анализа. Чтобы обратить внимание на некоторые важные особенности такого способа доказательства, уместно обратиться к примеру. Одна из известных теорем функционального анализа утверждает, что для любого сжимающего отображения произвольного полного метрического пространства в себя существует единственная неподвижная точка этого отображения. Это утверждение доказывается так: в метрическом пространстве выбирается произвольная точка, данное сжимающее отображение применяется сначала к этой точке, потом к получившемуся в результате его применения образу этой точки, потом к образу образа и т.д. Выясняется, что возникающая при этом последовательность имеет предел и этот предел - точка пространства, не изменяющаяся при применении к ней данного отображения.
Как в формулировке этой теоремы, так и в ее доказательстве фигурируют лишь общие термины. Доказательство, однако, проведено так, что все общие термины в нем можно заменить на единичные. Так, задав некоторое полное метрическое пространство (допустим, фиксированный отрезок прямой линии), т.е. указав вполне определенный единичный предмет, обладающий всеми требуемыми свойствами, и задав какое-то конкретное сжимающее отображение на нем, мы можем, пользуясь прописанной в доказательстве схемой, указать на некоторый, также вполне определенный, единичный предмет, обладающий всеми требуемыми свойствами (т.е. являющийся неподвижной точкой отображения). Указание единичного предмета - важнейший момент такого рода рассуждений. Хотя само оно и проводилось как бы абстрактно, т.е. безотносительно каких-либо единичностей, однако возможность работы с ними и составляет его реальный смысл. Любой, включенный в рассуждение индивидуальный предмет получает в ходе его полную определенность (ясность онтологического статуса) в силу его отличимости от любого другого предмета, указанного каким-либо иным способом. Итак, о каком-либо предмете можно сказать, что он существует, если приведена конечная схема, которая, будучи применена к указанному вполне определенному объекту (или конечному набору объектов), приводит к построению рассматриваемого предмета. Тот факт, что схема, на которую мы ссылались в нашем примере, содержала построение бесконечной последовательности, еще не нарушает конструктивности определения существования. Предел последовательности есть вполне определенный объект, построение которого, при заданной сходящейся последовательности, вовсе не требует таких запредельных абстракций, как актуальное предъявление всей бесконечной последовательности. Выяснить, например, что последовательность xn = 1/2n сходится к 0, можно с помощью легко завершаемой процедуры. Последнее верно, конечно, не для любой последовательности. Но в разобранном нами примере такую последовательность указать можно. (Например, если задать отображение, которое каждой точке отрезка будет ставить в соответствие точку, расположенную в два раза ближе к фиксированному концу отрезка.) Но именно эта возможность и важна для определения существования в конструктивном смысле. Слово "существует" в рамках рассмотренной нами интерпретации должно быть прочитано именно как "существует единичный предмет, на который можно непосредственно указать".
Конечно же математическое рассуждение не ограничивается такими, завязанными на вполне определенный единичный предмет, построениями. Математический анализ постоянно имеет дело с такими предметами, которые не могут быть вполне определены с помощью конечной процедуры построения. Самый характерный пример - иррациональное число, которое определяется либо как последовательность рациональных чисел, либо как сечение на множестве рациональных чисел. В любом случае такое определение предмета предполагает предъявление какой-то бесконечной совокупности и о его существовании уже невозможно говорить в рассмотренном выше смысле. Тем более это невозможно, если речь идет о последовательностях или о бесконечных множествах вещественных чисел. Названные предметы, тем не менее, весьма активно изучаются в анализе. В математике принято два способа говорить о существовании этих неконструируемых предметов.
Первый неконструктивный способ интерпретации существования связан с законом исключенного третьего. На нем основаны все доказательства от противного. Приведем еще один пример. Одна из центральных теорем анализа утверждает, что если последовательность монотонна и ограничена, то она имеет предел. Доказательство этого факта часто проводят, предположив, что данная последовательность нефундаментальна (т.е. не удовлетворяет критерию Коши). Из этого предположения легко выводится, что последовательность в таком случае и не ограничена, что противоречит условиям теоремы. Далее же на основании закона исключенного третьего утверждается фундаментальность рассматриваемой последовательности, а соответственно и наличие предела. Никаких указаний на какое-либо конкретное число, могущее быть пределом последовательности, равно как и на способ его вычисления, нет ни в формулировке, ни в доказательстве теоремы. Мы, конечно, можем усмотреть здесь какую-то схему, которая может быть применена к заданной последовательности, т.е. к определенному единичному предмету. Но к построению другого единичного предмета (в существовании которого и требуется удостовериться) предложенная схема не приведет. Это предмет останется предметом гипотетическим. Нет никаких реальных критериев для того, чтобы отличить его от какого-либо другого. Брауэр, о взглядах которого на проблему существования мы будем более подробно говорить в дальнейшем, считал, что философским основанием для такого типа рассуждений является реализм (или "платонизм"), неправомерно перенесенный на математические объекты [65]. Утверждая, что бесконечная последовательность (которую мы не построили и не можем построить) должна быть либо фундаментальной, либо нефундаментальной, мы верим в некоторое действительное положение дел, существующее независимо от нас в каком-то идеальном мире. Наше суждение об этом положении дел может быть истинным или ложным, сама же реальность, никак не связана с нашими собственными действиями. Брауэр считал неправомерным использование закона исключенного третьего потому, что по его убеждению математические объекты и их отношения не есть независимая от субъекта реальность, о которой можно лишь истинно или ложно судить, а есть продукт собственной деятельности субъекта. Можно не принимать такую точку зрения, но трудно, по-видимому, отрицать, что онтологический статус предмета, определенный подобным образом, остается довольно сомнительным. Мы начинаем оперировать с предметом, присутствие которого непосредственно не удостоверено. Можно сказать, что такой предмет не существует в подлинном смысле, а как будто существует. Не имея возможности предъявить его в нашем рассуждении, мы рассуждаем так, как если бы он существовал (как если бы был построен). Установив существование с помощью закона исключенного третьего, часто имитируют непосредственное указание на этот предмет, вводя для него имя, участвующее далее во всех рассуждениях. Другой способ понимания существования в отношении предметов математики также связан скорее с предположением о существовании (по крайней мере, если сопоставлять его с конструктивным предъявлением индивида). Введение целых классов предметов осуществляется с помощью мыслительного хода, подобного тому, который был предпринят при введении отрицательных чисел для учета расходов и долгов в разных финансовых операциях или введении иррациональных (а затем и комплексных) чисел при решении алгебраических уравнений. Всякий раз в рассуждение вводится некий квази-объект, который не указывается конструктивно. Про него лишь говорится, что он может участвовать в различных манипуляциях с числами наравне с числами "настоящими" (например, рациональными). Для него придумывается специальный значок, который подставляется в формулы. Причем результатом применения к нему этих формул оказывается вполне определенное, вычисляемое число. Сам же этот квази-объект по существу оказывается отождествлен с тем значком, который подставляется вместо него в формулу.
Что же позволяет считать такие квази-объекты существующими. Здесь оказывается уместна та интерпретация существования, на которой настаивал Пуанкаре: критерием существования является свобода от противоречия. Все те формулы, в которые подставляются введенные для таких предметов значки, не должны противоречить друг другу. Более ясным этот критерий становится при обращении к аксиоматическому построению математики. Паункаре писал: "Если мы ... имеем систему постулатов, и если мы можем доказать, что эти постулаты не заключают в себе противоречия, то мы вправе рассматривать их как определения одного из тех понятий, которые фигурируют в этой системе предложений" ([48] с.373). Еще яснее такая интерпретация становится видимо, если прибегнуть к более поздней терминологии. Предмет существует, если он оказывается термом в непротиворечивой теории. Такой подход к проблеме существования сразу же ставит проблему непротиворечивости. Мы обсудим это подробнее, когда будем разбирать взгляды Гильберта.
Нашей ближайшей задачей будет углубление названных здесь интерпретаций существования. Каждая из них имеет достаточно солидную философско-математическую базу. Построение такой базы требует выявления ряда предпосылок, неявно присутствующих в любом математическом дискурсе. Сознательное прописывание такого рода предпосылок (т.е. работа, которую можно назвать уже чисто философской) не раз предпринималось ведущими математиками. К анализу взглядов некоторых из них мы сейчас обратимся.
2 Концепция существования у Кантора
В работах Георга Кантора есть ряд пассажей, в которых он довольно точно объясняет, что следует считать существующим в математике. Обратим внимание, прежде всего, на следующее высказывание.
"Во-первых, мы можем считать целые числа действительными (здесь, очевидно, имеется в виду "действительно существующими" - Г.Г.) постольку, поскольку они занимают на основе определений вполне определенное место в нашем рассудке, вполне ясно отличаются от всех остальных составных частей нашего мышления, находятся к ним в определенных отношениях и, таким образом, определенным образом видоизменяют субстанцию нашего духа." Такого рода реальность Кантор называет "интрасубъективной" или "имманентной", которую он отличает от реальности "транссубъективной" или "транзиентной". Последняя приписывается числам "постольку, поскольку их приходится рассматривать как выражения или отображения процессов во внешнем мире, противостоящем интеллекту". Внешний мир, что немаловажно, включает как "телесную", так и "духовную природу". "Для меня - пишет далее Кантор - не подлежит никакому сомнению, что оба эти вида реальности всегда совпадают в том смысле, что какое-нибудь понятие, принимаемое за существующее в первом отношении, обладает в известных, даже бесконечно многих отношениях транзиентной реальностью." ([31], c.79)
Итак "транзиентная реальность", будучи трансцендентным интеллекту внешним миром, все же совершенно адекватно представлена определенными понятиями. Эта определенность и должна служить своего рода критерием существования. Поскольку основные усилия Кантора направлены на обоснование реальности объектов создаваемой им теории бесконечных множеств, то речь должна идти главным образом об определенности этих множеств и их элементов. Если нам удастся установить их ясную "отличимость от всех остальных составных частей нашего мышления", то мы можем быть уверены, что они совершенно адекватно представляют предметы внешнего мира (причем, скорее "духовной" нежели "телесной" природы - поскольку речь идет о бесконечных множествах). Поэтому математика "при развитии своих идей должна считаться единственно лишь с имманентной реальностью своих понятий и не обязана вовсе проверять также их транзиентную реальность" (с. 79-80; курсив Кантора). Здесь уместно следующее рассуждение, проводимое Кантором несколько ранее. "Многообразие (совокупность, множество) элементов,принадлежащих любой сфере понятий, я называю вполне определенным, если на основе его определения и вследствие логического принципа исключенного третьего становится возможным рассматривать внутренне определенным как то, является или не является его элементом любой объект из этой сферы понятий, так и то, равны или нет друг другу два принадлежащих множеству объекта, несмотря на формальные различия в способах их задания." ([31], c. 50-51; Курсив Кантора).
Выяснять принадлежит ли данный предмет указанному множеству, а также устанавливать его тождественность с другим предметом на основании закона исключенного третьего, можно лишь предположив у него наличие определенных свойств. Последнее означает, что предмет рассматривается как сущность, могущая выступать в качестве субъекта суждения. Такой предмет должен быть введен в рассуждение с помощью родо-видового определения, т.е. опять же через указание его существенных свойств. Следовательно Кантор склонен рассматривать множество именно как класс сущностей объединенных на основании определенной общности признаков. Поскольку в его теории сами множества могут рассматриваться как элементы других множеств, то значит и сами эти классы следует считать сущностями. Любая сущность-множество задается с помощью набора определяющих свойств своих элементов, через которые устанавливаются также и свойства самой этой сущности.
Объекты своей теории Кантор вводит с помощью отвлечения общих признаков, присущих классу сходных предметов. Именно так он определяет понятия мощности и порядкового типа. Обе названные характеристики он рассматривает как общее свойство множеств "возникающее путем абстрагирования от всех особенностей". В частности Кантор пишет: "Тем, что мы мыслим только о том, что является общим для всех множеств, принадлежащих одному и тому же классу, мы получаем понятие мощности или валентности" ([31], c. 248; курсив Кантора). Точно также пишет он и о порядковых типах: "Я рассматриваю целые числа и порядковые типы как универсалии, которые относятся к множествам и получаются из них, когда абстрагируются от свойств элементов" (c. 269). Из последнего отрывка очевидно, что Кантор пытается рассматривать трансфинитные числа по аналогии с конечными целыми числами. Последние действительно можно рассматривать как результат абстрагирования от особенных свойств конечных множеств. Так число четыре есть то общее, что присуще четырем яблокам, четырем ножкам стула, четырем углам квадрата и т.д. - это весьма традиционное представление, восходящее к Аристотелю. Кантор же склонен рассматривать любое множество как сущность. Оно должно считаться существующим, если каждый его элемент вполне определен. Тогда и само множество вполне определено и его существенный признак (т.е. его порядковое число) также рассматривается как вполне определенное. Кантор, по-видимому, склонен субстантивировать и эти существенные признаки. Он даже пытается описать их в аристотелевских категориях материи и формы, утверждая, что совокупность элементов множества следует рассматривать как материю порядкового числа, а порядок, существующий между этими элементами, как форму (c. 270-271). (См. примечание 1)
3 Брауэровская интерпретация существования
Выше мы выделили такое понимание существования предмета в математике, которое основано на возможности непосредственно указать на этот предмет с помощью определенной завершенной процедуры. Иными словами, предмет существует тогда, когда может быть сконструирован. Утверждение, что такая интерпретация существования является атрибутом интуиционистской школы (существенным признаком, отличающим ее от других школ) давно стало общим местом. Выразительная формула - "esse=construi" - рассматривается (и, очевидно, не без основания) как девиз всего этого направления. Важно, впрочем, иметь в виду, что приведенная фраза принадлежит Карлу Попперу, весьма критично относившемуся к интуиционизму ([46], c. 473-479). Как бы точно ни характеризовало попперовское выражение интуиционистское понимание существования, оно нуждается в серьезном углублении.
Конструктивность математических объектов не появляется в математике интуиционистской школы как нечто само собой разумеющееся. По крайней мере для Брауэра (о котором мы и будем говорить в дальнейшем) она оказывается необходимым следствием анализа когнитивной деятельности человека. Структура математического рассуждения (как его представляет Брауэр) отражает прежде всего эту деятельность, более того, является наиболее чистым ее выражением.
Брауэровская математика (как и вся математика интуиционистской школы) чаще всего рассматривается в контексте кризиса оснований, вызванного обнаружением известных парадоксов и антиномий. Поэтому в требовании конструктивности математических объектов видят, главным образом, попытку устранить из математики самую возможность противоречия. Однако сам Брауэр, очевидно, идет гораздо дальше этой попытки. В целом ряде его работ обнаруживается не столько математический, сколько чисто философский интерес автора. Во всяком случае в тех статьях, на которые мы намерены в дальнейшем опираться, Брауэр озабочен не обоснованием корректности математических процедур, а исследованием когнитивной деятельности мысли как таковой. При этом он имеет явное намерение основать принцип существования в математике на исходных структурах мысли. Им предпринимается попытка трансцендентального анализа, призванного обосновать основные математические понятия как производные от форм интеллектуальной деятельности.
Брауэр представляет когнитивную активность человека в виде последовательности ясно отличимых друг от друга восприятий. В работе "Об основаниях математики" он писал так: "Человек наблюдает в мире последовательности событий, причинные цепи, разворачиваемые во времени. Основным феноменом этого наблюдения является сама интуиция времени, в которой происходит повторение восприятий или действий. Эта интуиция обнаруживается как последовательность моментов, разбивающих жизнь на последовательность вещей, качественно отличимых друг от друга" ([65], c. 99). Не само по себе восприятие определяет структуру мысли. Брауэр выделяет нечто, называемое "элементарный акт мысли", который описывает как "разделение моментов жизни на качественно различные части, которые, будучи разделены лишь временем, могут быть снова объединены". (См. примечание 2)Из этого, не очень ясного высказывания можно заключить, что акт мысли не есть простое действие или восприятие, связанное с определенным моментом времени. Элементарный акт мысли состоит именно в различении моментов. Иными словами элементарный акт мысли производит выделение некоторых отличных друг от друга индивидов, причем отличие их определяется разделяющими их временными промежутками. Производится, таким образом, организация времени, в котором, как в некоторой аморфной среде, выделяются фиксированные дискретные моменты. Это значит, что деятельность мысли определена двумя основными интуициями: дискретная последовательность и непрерывная среда (линейный континуум).
Естественным примером такой расчленяющей деятельности является деление отрезка прямой линии при нанесении на него последовательности точек. Само построение отрезка, отличимого от других отрезков, его выделение в качестве отдельного восприятия можно считать элементарным актом мысли. Но серия других элементарных актов, состоящих в делении построенного отрезка, позволяет различать в его пределах другие восприятия, части этого отрезка. Сами восприятия, (См. примечание 3) будучи ограничены какими-то границами (концы отрезка) могут быть безгранично делимы. Мы полагаем, что именно это имел в виду Брауэр, когда писал: "Возможность мысленного объединения нескольких единиц, связанных некоторым промежутком, никогда не исчерпывается вставлением новых единиц" ([55], c. 245). В результате процедуры деления отрезка мы структурируем ранее нерасчлененное единство и создаем определенную дискретную последовательность в пределах непрерывной среды. Таким образом мы все больше определяем эту самую среду, устанавливая отношения ее частей.
Две основные интуиции мысли находятся, следовательно, в состоянии постоянного взаимного определения и дополнения. Дискретная последовательность моментов структурирует аморфную среду, нечто постоянно недоопределенное, остающееся между названными моментами. (См. примечание 4)Приведенный нами геометрический пример является парадигмальным для описания любой когнитивной деятельности. Последняя, как видно, состоит в различении моментов восприятий в непрерывной временной среде и расчленении и уточнении самих восприятий.
Математика представляет собой наиболее чистое и, по-видимому, наиболее развернутое выражение такой деятельности. Френкель и Бар-Хиллел приводят следующее высказывание Брауэра: "Изначальная интуиция математики и всякой интеллектуальной деятельности представляет собой основу всех наблюдений за какими-бы то ни было изменениями, поскольку при этих изменениях игнорируются все качественные свойства" ([55], c. 240; курсив наш - Г.Г.).
Отвлечение от всякого чувственного содержания дискретной последовательности различающих актов мысли и создает представление целого числа, точнее, последовательности целых чисел, счета. При этом континуум, который Брауэр также называет основной интуицией, оказывается как бы в подчиненном положении. Он должен быть определен в ходе развертывания дискретной (числовой) последовательности.
Числовая последовательность оказывается для Брауэра основным математическим объектом. Конструирование, которое, согласно замечанию Поппера, является единственным онтологически значимым для математики процессом, следует рассматривать именно как конструирование числовых последовательностей. Впрочем, такое конструирование часто является не самоцелью, а скорее способом определения непрерывного протяженного предмета. Последний, конечно, не есть реальность, данная до всякого построения. Он - среда, а не вещь. Существует то, что происходит в этой среде, точнее, что создается субъектом, действующим в пределах, заданных этой средой. Создается же им дискретная числовая последовательность. Основополагающим отношением для любой последовательности является отношение 'до-после' (отношение порядка). Это отражает ведущую роль интуиции времени в математике. Структура различия, вносимая субъектом в среду, является временной структурой. Основным различением, существующим между создаваемыми элементами, является различение во времени. Определенность предмета возникает, однако еще при одном условии, которое и делает, на наш взгляд, окончательно ясной роль конструктивности. Необходимо принять во внимание еще одну важную характеристику когнитивной деятельности, на которую указывает Брауэр. "Человеческое поведение включает попытку удерживать достаточно длинную цепь 'вещей' с тем, чтобы иметь возможность перейти мысленно от последней к более ранней. Результатом такого действия является обнаружения правила, закона, формирующего последовательность" ([65], с. 99).
Коль скоро когнитивная деятельность подразумевает удержание в мысли некоторого единства, чего-то целого, явленного в последовательных восприятиях (или действиях), то математика должна, выражая эту способность, конструировать единый предмет из многих элементов последовательности. "Человеческое понимание основано на конструировании обычных математических систем так, что каждый индивидуальный элемент жизни связан с соответствующим элементом системы" (Там же). Конструкция, таким образом, оказывается необходима потому, что создает единство многих конструктивных элементов (различенных моментов или восприятий). Конструирование, следовательно, лежит в основе человеческого понимания всякого предмета вообще. Благодаря созданной конструкции, предмет предстает человеку как существующий. Особенно это важно коль скоро речь идет о протяженном предмете, представление которого связано с длением, с непрерывно длящимся восприятием. Смысл конструирования тогда состоит в создании целостной структуры различимых элементов в текучей и неопределенной среде.
Брауэром, следовательно, была реализована трансцендентальная установка, причем в том виде, в каком она прописана у Канта. К онтологической проблематике он подходит со стороны анализа рассуждения и выясняет как должен быть устроен предмет, чтобы фигурировать в рассуждении в качестве существующего. Более того, Брауэр выясняет, что предмет должен быть для этого создан в результате конструктивной деятельности, разворачиваемой во времени. Такая конструктивная деятельность сводится к созданию единой структуры - именно так понятый математический объект может рассматриваться как существующий. Единая структура, с другой стороны, развертывается согласно закону, правилу, устанавливаемому для ряда "вещей" или восприятий. По-видимому трудно интерпретировать это правило иначе, как действие способности суждения, как установление обобщающей гипотезы для совокупности установленных ранее фактов.
Рекомендуем скачать другие рефераты по теме: эффективность реферат, бесплатные шпоры.
Категории:
1 2 | Следующая страница реферата