Средства визуализации изображений в компьютерной томографии и цифровых рентгенографических системах
| Категория реферата: Рефераты по медицине
| Теги реферата: рефераты баллы, реферат бесплатно без регистрации
| Добавил(а) на сайт: Ивашев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Ко второму классу цифровых рентгенографических систем следует отнести
люминофоры с памятью и вынужденной люминесценцией, которая затем
регистрируется. Это приемник с непосредственным формированием изображения.
[№ 6]
Системы получения изображения со сканированием рентгеновским пучком и приемником имеют важное преимущество, состоящее в том, что в них хорошо подавляется рассеяние. В этих системах один коллиматор располагается перед пациентом с целью ограничения первичного рентгеновского пучка до размеров, необходимых для работы приемника, а другой - за пациентом, чтобы уменьшить рассеяние. На рис.3 изображена линейная сканирующая система для получения цифрового изображения грудной клетки. Приемником в системе является полоска из оксисульфида гадолиния, считывание информации с которой ведется линейной матрицей из 1024 фотодиодов. Проекционные рентгенограммы синтезируются также сканерами компьютерной томографии и выполняют вспомогательную роль при выделении соответствующего сечения.
Главным недостатком сканирующих систем является то, что большая часть полезной выходной мощности рентгеновской трубки теряется и что необходимы большие времена экспозиции (до 10 с).
[pic]
Рис.3 Система линейного сканирования для цифровой рентгенографии грудной клетки.
Матрицы изображения из 512х512 элементов может быть вполне достаточно для целей цифровой флюороскопии (флюорографии), тогда как система рентгеноскопии грудной клетки может потребовать матрицы с числом элементов 1024х1024 при размерах элемента изображения 0,4 мм.
Число градаций в изображении зависит от медицинского назначения.
Аналого-цифрового преобразования на 8 бит, обеспечивающего точность
0,4%, вполне достаточно для регистрации зашумленных изображений или
больших массивов (меньшей ступени градации яркости соответствует больший
уровень шума), однако для ряда приложений может понадобиться и 10-
битовый АЦП (точность 0,1%).
Если требуется быстрый доступ к информации, полученной за
длительный период времени, целесообразно применять оптические диски.
Емкость памяти 12-дюймового оптического диска равна примерно 2 гигабайт, что соответствует 1900 изображениям размером 1024х1024 по 8 бит каждое (без
сжатия данных). Для считывания с оптического диска может быть использовано
автоматическое устройство съема, позволяющее обеспечить быстрый доступ
к любому изображению. Возможность работы со всеми изображениями в цифровой
форме весьма привлекательна, а системы, выполняющие это, называются
системами хранения и передачи изображения (СПХИ или СХПИ). [№ 5, стр. 100-
102]
[pic]
Рис.5 Принципиальная схема взаимодействия элементов системы получения, обработки, хранения и передачи рентгеновских диагностических изображений.
На рис.5 изображена принципиальная схема взаимодействия элементов системы получения, обработки, хранения и передачи рентгеновских диагностических изображений.
Система представлена тремя каналами: 1) традиционная рентгенография;
2) цифровая рентгенографическая установка; 3) рентгеноскопия
(видеосигнал с УРИ).
Первый канал. Рентгенограммы, полученные с помощью традиционного процесса, поступают на обработку в полутоновый графический сканер, с помощью которого рентгенодиагностическое изображение вводится в память компьютера. После этого такая преобразованная рентгенограмма может обрабатываться средствами компьютерной техники, но в рамках узкого динамического диапазона рентгеновской пленки. Это изображение может быть введено в электронный архив и извлекаться оттуда по требованию. Эта оцифрованная рентгенограмма уже ничем не отличается от прямых цифровых рентгенограмм по доступности средствам обработки.
Третий канал. Рентгеновские изображения из рентгенотелевизионного
канала УРИ могут захватываться специализированным адаптером видеоввода как
в режиме реального времени, так и с видеомагнитофонного кадра.
Последнее предпочтительно, так как позволяет при просмотре
видеомагнитофонных изображений выбрать нужный кадр для занесения его в
архив. Объектом ввода в электронный архив могут быть любые изображения, получаемые при рентгеноскопии с помощью УРИ.
Первый и третий каналы дают возможность преобразовать традиционные
рентгеновские изображения (рентгенограммы и кадры видеотелевизионного
тракта) в цифровое изображение. Этот прием имеет особое значение, потому
что он представляет возможность достоверно сравнить изображения, полученные различными способами. Следующим преимуществом преобразования
являются возможность помещения его в электронный архив и выполнение всех
операций с цифровым изображением. Следует особенно подчеркнуть возможность
передачи изображения по компьютерным сетям, потому что в последние годы
«взгляды медиков фокусируются на передаче изображений» как основном
средстве обеспечения доступа к материалам, что имеет колоссальное
значение как для диагностики, так и для процессов обучения.
Второй канал. Это собственно канал цифровой рентгенографической установки. Он состоит из двух подсистем: автоматизированного рабочего места (АРМ) лаборанта и АРМ врача-рентгенолога (ВР), объединенных в локальную сеть. В АРМ рентгенолаборанта происходит внесение сведений о больном, необходимых организационных и клинических данных и управление процессом регистрации изображения (синхронное включение сканера и высокого напряжения и др.). После получения рентгеновского изображения оно и сведения о пациенте по локальной сети поступают в АРМ ВР. При этом процесс рентгенографии и передачи изображений от АРМ лаборанта в АРМ врача происходит без промедлений и в реальном времени, не прерывая работы врача ни на одной ступени, т.е. происходит непрерывная и независимая работа на обоих рабочих местах. На АРМ ВР выполняются программная обработка изображений для извлечения диагностической информации, поиск предшествующих изображений пациентов и сравнение с вновь полученными, регистрация новых пациентов и изображений в базе данных, приведение их к формату, оптимальному для архивирования, и другие манипуляции, доступные электронным технологиям персонального компьютера. Программное обеспечение позволяет врачу-рентгенологу при необходимости создать твердые копии изображений на лазерном принтере ( этот способ получения твердых копий несколько уступает в точности передачи диагностических изображений теплопечати или поляроидному фотопроцессу, но значительно дешевле всех других способов воспроизведения изображения); при наличии сетевой связи позволяет передать их клинические подразделения, связаться с консультационными центрами или центральным архивом по электронной связи. Блок базы данных, являющийся сердцевиной системы, формализует все этапы работы с пациентом от внесения данных лаборантом до размещения в архивное хранение, позволяет врачу- рентгенологу создавать все виды стандартной отчетности, а также анализировать проведенную работу по целевым выборкам. Конечным этапом работы с цифровым изображением всех трех видов является его архивирование на магнитный или оптический носитель. [№ 6]
3.1. Состав технических средств АРМ ВР.
Выбор технических средств для АРМ ВР (автоматизированное рабочее
место врача-рентгенолога) во многом зависит от типа решаемых задач. Обычно
в качестве технической базы для АРМ обработки изображений используют
графические станции или персональные компьютеры. Графические станции, созданные прежде всего для решений задач машинной графики, оборудованы
специальными графическими процессорами, ускоряющими процедуры построения
графических примитивов (особенно трехмерных). Для задач обработки и
анализа изображений более существенна скорость обработки видеоданных.
Поэтому в качестве технической базы АРМ ВР использована широко
распространенная и дешевая ПЭВМ типа IBM PC/AT.
[pic]
Рис.4 Блок-схема технических средств АРМ ВР.
1-негатоскоп; 2-телевизионная камера; 3-ПЭВМ; 4-фрейм- граббер; 5-телемонитор.
Практическая работа показала, что производительность персонального компьютера во многих случаях достаточна, чтобы решать задачи обработки видеоданных в реальном времени врача. Кроме того ПЭВМ имеют мощные технические и программные средства для организации «оконного» человеко- машинного диалога.
При использовании изображений, записанных в аналоговом виде, например
рентгенограмм, необходимо устройство для ввода и визуализации их в ЭВМ. В
качестве такого устройства удобно использовать фрейм-граббер конструктивно
оформленный в виде платы, расположенной в корпусе ПЭВМ. Также необходимо
иметь телекамеру с объективом, световой стол для подсветки
рентгенограмм (негатоскоп) и телемонитор для визуализации изображений
(рис.4). Устройство цифрового ввода и визуализации изображений должно
обеспечивать высокое качество представления медицинских изображений, чтобы при их использовании не терялась важная диагностическая информация.
[№ 7]
3.2. Области применения и преимущества цифровых систем.
Рекомендуем скачать другие рефераты по теме: банк бесплатных рефератов, доклад на тему.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата