Инновационный менеджмент
| Категория реферата: Рефераты по менеджменту
| Теги реферата: изложение 3, шпаргалки на телефон
| Добавил(а) на сайт: Dragomirov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
В скобках стоит сумма бесконечной геометрической прогрессии, равная, как известно, величине 1/(1-С). Следовательно, максимально возможный суммарный доход от первого года после вложения до скончания мира равен ВС/(1-С).
Отсюда следует, что если А/В меньше С/(1-С), то можно указать (рассчитать) срок окупаемости проекта, но он будет существенно больше, чем А/В. Если же А/В больше или равно С/(1-С), то проект не окупится никогда. Поскольку максимально возможное значение С равно 0,89, то проект не окупится никогда, если А/В не меньше 0,89/ 0,11 = 8,09.
Пусть вложения равны 1 миллиону рублей, ежегодная прибыль составляет 500 тысяч, т.е. А/В = 2. Пусть дисконт-фактор С = 0.8. Каков срок окупаемости? При примитивном подходе (соответствующем С = 1) он равен 2 годам. А на самом деле?
За k лет будет возвращено
ВС ( 1 + С + С2 + С3 + С4 + ...+ Сk )= ВС ( 1 - Сk+1) / (1-С) ,
согласно формуле для суммы конечной геометрической прогрессии. Для срока окупаемости получаем уравнение
1 =0,5 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (4)
откуда 0,5 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,5. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,5 , откуда
(k+1) = ln 0,5 / ln 0,8 = (- 0,693) / ( - 0,223) = 3,11, k = 2,11.
Срок окупаемости оказался в данном примере равном 2,11 лет, т.е. увеличился примерно на 4 недели. Это немного. Однако если В = 0,2, то вместо (3) мы имели бы
1 =0,2 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8),
Это уравнение не имеет решения, поскольку А / В = 5 > С/(1-С) = 0.8 / (1- 0,8) =4, проект не окупится никогда. Окупаемости можно ожидать лишь в случае А/В < 4. Рассмотрим и промежуточный случай, В = 0,33, с "примитивным" сроком окупаемости 3 года. Тогда вместо (4) имеем уравнение
1 =0,33 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (5)
откуда 0,76 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,24. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,24 , откуда
(k+1) = ln 0,24 / ln 0,8 = (- 1.427) / ( - 0,223) = 6,40, k = 5,40.
Итак, реальный срок окупаемости - не три года, а согласно уравнению (5) чуть менее пяти с половиной лет.
Если вложения делаются не единовременно или доходы поступают по иной схеме, то расчеты усложняются, но суть дела остается той же.
Таким образом, срок окупаемости зависит от неизвестного дисконт-фактора С или даже от неизвестной дисконт-функции - ибо какие у нас основания считать будущую дисконт-функцию постоянной? Иногда (даже в официальных изданиях [8] !) рекомендуется использовать норму дисконта (дисконт-фактор), соответствующую ПРИЕМЛЕМОЙ для инвестора норме дохода на капитал. Мы не знаем, какую норму дисконта тот или иной инвестор сочтет приемлемой. Однако ясно, что она зависит от ситуации в экономике в целом. То, что представляется выгодным сегодня, может оказаться невыгодным завтра, или наоборот. Тем самым решение перекладывается на инвестора, который выступает в роли эксперта по выбору нормы дисконта.
4.2. Чистый приведенный доход (прибыль)
Не всегда инвестиции сводятся к одномоментному вложению капитала, а возврат происходит равными порциями. Чаще приходится анализировать поток платежей и поступлений общего вида. Будем называть потоком платежей и поступлений последовательность a(0), a(1), a(2), a(3), ... , a(t), .... Если величина a(k) отрицательна, то это платеж, е если она положительна - поступление. В предыдущем пункте был рассмотрен поток с одним платежом a(0) = ( - А) и дальнейшими поступлениями a(1) = a(2) = a(3) = ... = a(t) = .... = В.
Дисконтированную прибыль, точнее, чистый приведенный доход (или эффект, или величину, по-английски - net present value, сокращенно NPV), т.е. разность между доходами и расходами, рассчитывается для потока платежей путем приведения затрат и поступлений к одному моменту времени:
NPV = a(0) + a(1)С(1) + a(2)С(2) + a(3)С(3) + ... + a(t)С(t) + ...(6),
где С(t) - дисконт-функция, определяемая по формулам (2) или (3). В простейшем случае, когда дисконт-фактор не меняется год от года и согласно формуле (1) имеет вид С = 1 / (1+ q), где q - банковский процент, формула для чистой приведенной величины конкретизируется:
NPV = NPV(q) = a(0) + a(1)/ (1+ q) + a(2)/ (1+ q)^2 + a(3)/ (1+ q)^3 + ...+ a(t)/ (1+ q)^t + .... (7)
Пусть, например, a(0) = - 10, a(1) = 3, a(2) = 4, a(3) = 5. Пусть q = 0,12, тогда, как установлено в п.3.3, согласно формуле (2) значения дисконт-функции таковы: С(1) = 0,89, С(2) = 0.80, а С(3) = 0,71. Тогда согласно формуле (6)
NPV(0,12) = - 10 + 3 х 0,89 + 4 х 0.80 + 5 х 0,71 = - 10 + 2,67 + 3,20 + 3,55 = - 0,58.
Рекомендуем скачать другие рефераты по теме: диплом вуза, стратегия реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата