Исследование горячеломкости литейных сплавов на основе систем Al-Si, Al-Cu, Al-Si-Cu
| Категория реферата: Рефераты по металлургии
| Теги реферата: дипломы грамоты, курсовая работа исследование
| Добавил(а) на сайт: Агита.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
| |Содержание Н2|Горячеломкость| | |
| | |, |Полная линейная|Интервал |
| |При |% |усадка, % |кристал- |
|Сплав |720°,см3/100г| | |лизации, С |
| | | | | |
| | | | | | | | |
| |А |Б |А |Б |А |Б | |
|В95 |0.45 |>0.8 |90 |0 |1.75 |1.55 |150 |
|Al с 4.5% Cu |0.42 |>0.8 |70 |15 |1.88 |1.65 |100 |
|Al с 0.8% Si |0.06 |>0.8 |86 |50 |1.74 |1.54 |77 |
|Д16 |0.15 |0.31 |66 |55 |1.69 |1.62 |132 |
|АМц |0.46 |>0.8 |90 |90 |1.97 |1.95 |1 |
|А00 (99.7% |0.04 |0.65 |33 |27 |1.95 |1.84 |0 |
|Al) | | | | | | | |
А – исходный сплав; Б – сплав после обработки водяным паром. Сравнивать
между собой показатели горячеломкости разных сплавов нельзя, так как они
определялись при использовании стержней разного диаметра
Если же горячеломкость снижается очень слабо или остаётся неизменной, то
линейная усадка также уменьшается незначительно или практически не
меняется. Уменьшение линейной усадки при обработке расплава водяным паром
(таблица 1) само по себе невелико (максимум 0.2%), но оно соизмеримо как с
величиной линейной усадки в интервале кристаллизации, так и с величиной
относительного удлинения в интервале хрупкости выше солидуса. Вместе с тем
ни разу не наблюдалось, что повышенное газосодержание расплава снижало
пластичность сплава в твёрдо-жидком состоянии. Наоборот, при введении
водорода в сплав В95 путём погружения в ванну промышленной печи влажного
асбеста наблюдалось увеличение относительного удлинения в интервале
хрупкости, так как при указанной обработке расплава зерно измельчалось.
Таким образом, причиной снижения горячеломкости при повышении газосодержания расплава является увеличение запаса пластичности в твёрдо- жидком состоянии в результате уменьшения линейной усадки в интервале кристаллизации.
Неодинаковое влияние обработки паром на горячеломкость разных сплавов
объясняется разной протяжённостью переходной области в отливках. Из
кольцевых отливок алюминия и сплава АМц газ сравнительно
свободно удалялся при кристаллизации, поэтому повышение газосодержания
практически не изменило ни линейной усадки, ни горячеломкости. Сплавы
В95, Al с 4.5% Cu и Al с 0.8% Si характеризуются широкой областью
затруднённого выделения газа в отливках, поэтому обработка их расплавов
водяным паром значительно снизила линейную усадку в интервале
кристаллизации и горячеломкость. Сплав Д16 при одинаковых условиях
обработки паром поглощал значительно меньше водорода, чем другие сплавы
(таблица 1); этим объясняется слабое уменьшение его горячеломкости, несмотря на сравнительно широкую переходную область в отливке.
Повышение газосодержания расплава не обязательно сопровождается
снижением горячеломкости, так как могут действовать другие факторы.
Например, газосодержание обычно возрастает с увеличением перегрева
расплава, а горячеломкость при этом не снижается, а наоборот, растёт.
Последнее обусловлено тем, что отрицательное воздействие укрупнения зерна
перекрывает положительное влияние роста газосодержания на горячеломкость.
Аналогичное явление можно встретить и при увеличении продолжительности
выстаивания расплава. Интересно, что на отливках из некоторых сплавов
наблюдается исчезновение трещин при большом перегреве расплава. Например, на кольцевых пробах из бронзы с 3% Sn при достижении температуры расплава
1280 ° кристаллизационные трещины полностью исчезали, но появлялись газовые
раковины. Как видно, сильное газопоглощение перекрыло здесь влияние
укрупнение зерна на горячеломкость. Встречаются случаи, когда плотные
оливки из разных сплавов бывают сплошь поражены трещинами, а пористые
отливки из тех же сплавов получаются без трещин.
Если введение газа в расплав уменьшает горячеломкость, то естественно
было ожидать усиления горячеломкости при дегазации расплава. Дегазацию
производили методом вакуумирования. Мерную порцию расплава отбирали из
лабораторного миксера и переливали в графитовый тигель вакуумной печи.
Дегазация производилась в течение 2.5-5 минут при разрежении 0.4-0.6 мм рт.
ст. и при температуре, на 100 ° превышающей точку ликвидуса. Наблюдавшееся
в смотровое стекло вспучивание зеркала расплава под действием интенсивно
выделяющихся газов указывало на то, что дегазация действительно
происходила.
Парные кольцевые пробы поочерёдно отливались из исходного и
вакуумированного расплавов (по семь-восемь пар колец из каждого сплава).
Средние показатели горячеломкости приведены в таблице 2. Опыты полностью
подтвердили предположение об усилении горячеломкости под действием
вакуумной дегазации.
Таблица 2. Горячеломкость и линейная усадка алюминиевых сплавов до и после вакуумирования сплава
| |Горячеломкость, % |Полная линейная усадка, % |
| | | |
|Сплав | | |
| |Исходный |Вакуумированный|Исходный |Вакуумированный|
| |сплав |сплав |сплав |сплав |
|В95 |60 |74 |1.61 |1.73 |
|Д16 |44 |86 |- |- |
|Al c 0.7% Si |16 |47 |1.81 |1.88 |
|Al c 3.5% Cu |58 |100 |- |- |
Одновременно с горячеломкость измеряли линейную усадку. Если при введении газа в расплав линейная усадка снижалась, то после вакуумной дегазации свежерасплавленного она возрастала, что и является причиной уменьшения запаса пластичности в твёрдо-жидком состоянии и роста горячеломкости.
1.1.3. Влияние состава сплавов на горячеломкость
Исследование зависимости горячеломкости от состава в количественной форме
впервые было выполнено Вэрэ на примере системы Al – Si. По его данным, при
добавлении кремния к алюминию горячеломкость возрастала, достигала
максимума при содержании 1.6% Si и при переходе через эту концентрацию
скачком падала до нуля. Хотя наличие такого скачка в дальнейшем не было
подтверждено, но работа Вэрэ сыграла важную роль: в ней впервые по
экспериментальным данным был построен график «горячеломкость – состав», показавший, что при увеличении концентрации второго компонента
горячеломкость проходит через максимум и практически исчезает при
достижении некоторого критического количества эвтектики. Такая
закономерность в качественном виде была подмечена ещё в более ранних
работах. По данным Шейера, в системах Al – Cu и Al – Zn наиболее сильно
были поражены трещинами кокильные образцы сплавов, содержащих около 1%
второго компонента, с увеличением концентрации которого склонность к
образованию трещин явно уменьшалась, а при содержании меди свыше 8% и цинка
выше 50% трещины совсем не появлялись.
Рассмотрим более детально влияние состава на горячеломкость сплавов
эвтектической системы, проводя сопоставление экспериментальных данных с
диаграммой состояния. Так как при литье и сварке всегда развивается
дендритная ликвация, то вполне естественно, что неравновесность
кристаллизации учитывалась начиная с самых ранних работ, анализировавших
зависимость горячеломкости от состава.
От равновесной диаграммы состояния так называемая неравновесная
диаграмма отличается сдвинутой в сторону компонента концентрационной
границей появления эвтектики и, соответственно, сдвинутой линией солидуса, а также пониженной температурой эвтектической кристаллизации.
Переохлаждение эвтектики сравнительно невелико и обычно намного меньше
эффективного интервала кристаллизации. Поэтому для анализа горячеломкости
оно существенного значения, как правило, не имеет, и далее учитываться не
будет. Сдвиг же границы появления эвтектики от точки предельной
растворимости в сторону ординаты компонента оказывает решающее влияние на
состав сплава с максимальной горячеломкостью и его всегда приходится
учитывать. В системах на основе алюминия и магния уже при медленном
охлаждении сплавов с печью наблюдается сильный сдвиг границы появления
эвтектики от точки предельной растворимости, а при охлаждении образцов в
интервале кристаллизации со средней скоростью порядка 100 град/мин
эвтектика в большинстве систем появляется при содержании лишь десятых долей
процента второго компонента.
Эффективный интервал кристаллизации при добавлении к чистому металлу
второго компонента возрастает, достигает максимума на концентрационной
границе появления эвтектики и затем постепенно уменьшается до нуля в точке
совпадения температуры начала линейной усадки с эвтектической горизонталью.
Горячеломкость тем больше, чем больше эффективный интервал кристаллизации, и поэтому состав сплава должен совпадать с границей появления эвтектики.
Это положение сыграло важную роль в изучении зависимости горячеломкости от
состава, так как оно позволило связать сопротивляемость сплавов образованию
трещин с диаграммой состояния и, в первом приближении, предсказать область
составов наиболее горячеломких сплавов. Но уже в работе А.А. Бочвара и З.И.
Свидерской отмечалось, что в системе Al – Cu сплав с максимальной
горячеломкостью содержал, по данным микроскопического анализа, небольшое
количество эвтектики. Дальнейшее накопление экспериментальных данных
показало, что во многих системах максимум на кривой «горячеломкость –
состав» несколько сдвинут, по сравнению с
границей появления эвтектики, в сторону большей концентрации легирующего
элемента.
Причину несовпадения максимумов горячеломкости и эффективного интервала
кристаллизации можно понять, если учесть влияние на горячеломкость
пластичности и линейной усадки и зависимости этих свойств от состава
сплава. Рассмотрим в качестве примера систему Al – Cu. Горячеломкость и
концентрационную границу появления эвтектики определяли на одних и тех же
образцах – кольцевых пробах при средней скорости охлаждения в интервале
кристаллизации 350 град/мин. Если использовать алюминий чистотой 99.96%, то
сплав с максимальной
горячеломкостью содержит 0.7% Cu, а граница появления эвтектической
составляющей проходит при 0.2% Cu. У малолегированных сплавов Al – Cu в
нижней части интервала кристаллизации остаётся очень немного жидкой фазы в
виде изолированных включений, не вызывающих межкристаллитного разрушения.
Поэтому у этих сплавов нижняя граница температурного интервала хрупкости
находится значительно выше неравновесного солидуса (эвтектической
температуры), а сам интервал хрупкости значительно уже эффективного
интервала кристаллизации. С увеличением содержания меди интервал хрупкости
расширяется. Вместе с тем, у сплавов, содержащих до 1% Cu, относительное
удлинение внутри интервала хрупкости находится на очень низком уровне и
практически не зависит от состава. Так как повышение содержания меди до 0.7
– 1% не изменяет относительного удлинения в интервале хрупкости, но
расширяет его и увеличивает в нём линейную усадку, то запас пластичности в
твёрдо-жидком состоянии снижается. При увеличении содержания меди свыше 1%
интервал хрупкости ещё продолжает расширяться, но при этом, благодаря
увеличению количества жидкой фазы по границам зёрен, значительно возрастает
относительное удлинение, им запас пластичности повышается.
Таким образом, объяснение несовпадения максимумов горячеломкости и
эффективного интервала кристаллизации сводится к следующему. У сплава
алюминия с 0.2% Cu, расположенного на концентрационной границе появления
эвтектики, эффективный интервал кристаллизации максимален, но температурный
интервал хрупкости меньше, чем у несколько более легированных сплавов.
Поэтому при практически одинаковом удлинении в интервале хрупкости
наименьшим запасом пластичности в твёрдо-жидком состоянии, т.е.
максимальной горячеломкостью, обладает сплав алюминия с 0.7% Cu, содержащий
больше второго компонента, чем сплав с максимальным эффективным интервалом.
Это положение справедливо для большинства систем эвтектического типа
(рисунок 3). Например, в системе Al – Zn максимум горячеломкости приходится
на 6% Zn, а максимум эффективного интервала кристаллизации – на 3% Zn
(граница появления эвтектики определена на шлифах из кольцевых проб).
Точно определить состав наиболее горячеломкого сплава можно только прямыми
опытами. Но в практическом отношении немаловажно, что по микроструктуре
можно ориентировочно оценить сравнительно узкую область составов, где
следует ожидать появления максимума горячеломкости. Это – область сплавов с
концентрацией легирующих элементов несколько большей, чем на границе
появления эвтектики в данных неравновесных условиях кристаллизации, область, где сплавы содержат не более десятых долей процента неравновесной
эвтектики.
[pic]
Рис.3 Несовпадение максимумов эффективного интервала кристаллизации и горячеломкости в системе эвтектического типа
Рассмотрим, в каком интервале концентраций вообще появляется
горячеломкость.
Сплавы, находящиеся в области составов от «критической» точки до
эвтектической, казалось бы, вообще не должны быть горячеломкими, так как
эффективный интервал у них равен нулю, а кристаллизация эвтектики, протекающая при постоянной температуре, сама по себе не должна вызывать
образования усадочных трещин. В действительности же на сложных фасонных
отливках можно встретить кристаллизационные трещины и в этой группе
сплавов. Из-за градиента температур усадка одних частей отливки, успевших
полностью затвердеть, вызывает растяжение соседних более горячих участков, находящихся ещё в стадии кристаллизации эвтектики. Растяжение участков, где
имеется остаточная жидкая фаза, может привести к образованию
кристаллизационных трещин. Таким образом, сплавы с нулевым эффективным
интервалом кристаллизации могут проявлять горячеломкость, т.е. не
существует абсолютно негорячеломких сплавов.
Состав сплава с максимальной горячеломкостью в каждой системе весьма постоянен: он практически не зависит от степени перегрева расплава, скорости охлаждения и геометрии отливки. С повышением температуры кокиля наблюдается лишь незначительная тенденция к смещению максимума горячеломкости в сторону менее легированных сплавов. Минимальная концентрация второго компонента, при которой экспериментально фиксируемая горячеломкость исчезает, наоборот, зависит от условий литья. Интервал концентраций, в котором обнаруживается горячеломкость, расширяется с увеличением степени перегрева расплава, увеличением скорости охлаждения и увеличением диаметра кольцевой пробы. Последние два фактора делают пробу более жёсткой, так как увеличивают градиент температур и усиливают локализацию усадочных деформаций, и поэтому способствуют выявлению горячеломкости до больших концентраций легирующего элемента. Увеличение перегрева расплава действует в том же направлении, так как расширяет область составов сплавов, в которых образуются столбчатые кристаллы.
Объясняя причину снижения горячеломкости при увеличении количества
эвтектики в сплаве, на первое место часто ставят способность эвтектической
жидкости залечивать образующиеся трещины. С этим нельзя согласиться, так
как эвтектика не обладает какой-то особой, резко отличной от
неэвтектической жидкости способностью заполнять возникающие трещины.
Снижение горячеломкости при увеличении количества эвтектики в сплаве
происходит благодаря росту запаса пластичности в твёрдо-жидком состоянии, а
последний увеличивается как в результате повышения удлинения в интервале
хрупкости, так и уменьшения линейной усадки. Главной причиной этого
является увеличение количества жидкой фазы, кристаллизующейся в последнюю
очередь при постоянной температуре. Такой фазой может быть не только
эвтектика, но и жидкость перитектического состава и фаза, кристаллизующаяся
в точке минимума на диаграмме плавкости непрерывного ряда твёрдых
растворов. Другой фактор, благоприятно сказывающийся на пластичности и
линейной усадке в твёрдо-жидком состоянии – измельчение зерна, в
особенности сужение зоны столбчатых кристаллов, происходящее при увеличении
количества эвтектики в сплаве.
1.1.4. Влияние зональной ликвации на горячеломкость
При изучении системы Al – Cu было обнаружено, что кроме обычного максимума
горячеломкости при 0.7% Cu, расположенного вблизи концентрационной границы
появления эвтектики, существует ещё один максимум при 4% Cu.
Микроструктурный анализ показал, что и в разрывных образцах и в кольцевых
пробах сердцевина сильно обеднена медью, а поверхностные слои обогащены ею
по сравнению с нормальной структурой сплава с 4% Cu. В других
алюминиевомедных сплавах обратная ликвация не была выявлена. Появление
второго максимума горячеломкости объяснили развитием обратной ликвации.
Зональная ликвация наиболее развивается в сплавах, значительно более легированных, чем сплав с максимальным эффективным интервалом кристаллизации. В отсутствии её такие сплавы должны обладать сравнительно небольшой горячеломкостью. Зональная ликвация приводит к образованию в отливке участков, обеднённых легирующим элементом до концентраций, соответствующих составам сплавов с высокой горячеломкостью. Неоднородность микроструктуры отливки обуславливает также большой разброс значений горячеломкости в разных опытах.
1.1.5. Влияние примесей на горячеломкость
Примеси оказывают разнообразное и часто очень сильное действие на
горячеломкость. Роль примесей неоднократно обсуждалась применительно к
самым разным сплавам. Ниже на нескольких примерах кратко рассмотрены
основные случаи влияния примесей на горячеломкость в связи с изменением
свойств сплавов в твёрдо-жидком состоянии.
Примеси воздействуют на горячеломкость главным образом через изменение пластичности. Они могут расширить и сузить интервал хрупкости, увеличить и уменьшить относительное удлинение в нём. На развитии линейной усадки в интервале кристаллизации примеси обычно не сказываются.
Рекомендуем скачать другие рефераты по теме: реферат на тему пушкин, сочинения по русскому языку.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата