Контроль качества сгорания топлива в методических нагревательных печах
| Категория реферата: Рефераты по металлургии
| Теги реферата: рецензия на дипломную работу, контрольная работа 3
| Добавил(а) на сайт: Klim.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Значение диффузионного тока в электрохимической ячейке определяется выражением:
[pic](10) где b — толщина мембраны; П — проницаемость мембраны; [pic]
—парциальное давление определяемого компонента (кислорода) пробы (АГС).
Таким образом, значение диффузионного тока — функция парциального давления определяемого компонента и, следовательно, его концентрации.
Рис. 6. Ячейки с индикаторным электродом: а – ртутным: 1 — ртутный капельный электрод; 2 — сосуд; 3 — перелив; б - графитовым: 1— графитовый индикаторный электрод; 2 — сосуд; 3 — анод; в — золотым (серебряным): 1— контактный термометр; 2 — свинцовый электрод сравнения; 3 — крышка; 4 — нагревательный элемент; 5 — серебряный индикаторный электрод; 6 — корпус; 7 — металлический диск
Ячейка с ртутным индикаторным электродом (рис. 6, а) снабжена капиллярным ртутным капельным электродом 1, установленным в сосуде 2, содержащем электролит (раствор соляной кислоты), поступающий в сосуд из специальной емкости. Ртуть в капиллярный электрод поступает из емкости, в которой она хранится. Выдыхаемый воздух подается в ячейку навстречу движущемуся вдоль капельного электрода электролиту, что обеспечивает образование равномерной пленки электролита на поверхности капилляра и установление полного равновесия раствор — газовая смесь, а также систематическое образование капель электролита в нижней части капилляра.
Электролиз осуществляется в каждой капле электролита, свободно висящей на конце капиллярного электрода. В такой ячейке уровень электролита под капилляром поддерживается строго постоянным с помощью перелива 3, соединенного с сосудом 2, на дне которого находится постоянный слой ртути, служащий анодом.
Ячейка с графитовым индикаторным электродом (рис. 6, б) состоит из графитового индикаторного электрода 1, сосуда 2 и анода 3, покрытого ртутной амальгамой. В качестве электролита используют раствор серной кислоты, содержащий в качестве деполяризаторов анода CdSO4 или ZnSO4, чем достигается постоянство его потенциала. Анализатор, где используется указанная ячейка (анализатор Новака ), предназначен для определения концентрации кислорода в технических газах в пределах 0—1 % (об.) с постоянной времени 10 с.
Ячейка с золотым (серебряным) индикаторным электродом (рис. 7, в)
состоит из корпуса 6, выполненного из органического стекла, крышки из
нержавеющей стали 3, на которой закреплен серебряный индикаторный электрод
5, свинцового электрода сравнения 2, нагревательного элемента 4, контактного термометра 1. На дне корпуса размещен металлический диск 7, приводимый в движение магнитной муфтой и предназначенный для перемешивания
электролита. В качестве электролита используют раствор уксусной кислоты, гидроксила натрия и ацетата свинца.
Анализатор Элкофлюкс, в котором используют указанную ячейку, рассчитан
на следующие пределы измерения по кислороду 0—0,002; 0—0,01; 0—0,1 % (об.).
Постоянная времени прибора при расходе пробы АГС 25 л/ч — 60 с.
Ячейка с золотым индикаторным электродом и золотым анодом (рис. 7, а).
На боковой стенке корпуса 1 из органического стекла имеются штуцер ввода
пробы АГС 8 и обратный клапан 9, предотвращающий выброс электролита при
колебаниях давления газа, электронагреватель 10, контактный термометр 5. В
корпусе 1 размещена электрохимическая система, состоящая из рабочего
электролита 6, барботажной пластины 11, индикаторного электрода 13, вспомогательного электрода 7, электрода сравнения 4, резервуара для
запасного электролита 2, штуцера выхода пробы АГС 3. Рабочий электролит
сливают через штуцер 12, резервный электролит — через штуцер 14. Материалом
для индикаторного и вспомогательного электродов служит золото. В качестве
электрода сравнения используют насыщенный каломельный электрод, в качестве
электролита (рабочего и резервного) — раствор гидроксида калия.
Рис 7 Ячейки: а — с золотым индикаторным электродом и золотым анодом:
1— корпус; 2 — запасной электролит; 3 — штуцер для выхода АГС; 4 — электрод
сравнения; 5 — контактный термометр; 6 — рабочий электролит; 7 —
вспомогательный электрод; 8 — штуцер для входа АГС; 9 — обратный клапан;
10— электронагреватель; 11 — барботажная пластина; 12 — штуцер для слива
рабочего электролита; 13 — индикаторный электрод; 14 — штуцер для слива
запасного электролита; б—с золотым индикаторным электродом и свинцовым
анодом: 1 — электролит; 2 — корпус; 3 — золотой индикаторный электрод; 4—
термочувствительный элемент; 5 — свинцовый анод; в — с серебряным
индикаторным электродом и свинцовым анодом: / — корпус; 2 — индикаторный
электрод; 3 — гидрозатвор; 4 — свинцовый анод; 5—электролит;
6—электролизер; 7—увлажнитель АГС
Ячейка с золотым индикаторным электродом и свинцовым анодом изображена на рис. 8, б. В корпусе 2 размещены золотой индикаторный электрод 3, свинцовый анод 5, погруженные в электролит 1, термочувствительный элемент, используемый в схеме термокомпенсации 4. В качестве электролита применяют раствор гидроксида натрия.
Ячейка с серебряным индикаторным электродом и свинцовым анодом
изображена на рис. 8 в. В корпусе 1 размещены увлажнитель газа 7, электролизер 6 с платиновыми электродами, индикаторный электрод, изготовленный из серебряной сетки 2, свинцового анода и гофрированной ленты
4. На внешней поверхности электрода намотана серебряная проволока, являющаяся токоотводом. Электроды погружены в электролит 5.
Кулонометричесий метод.
Основан на измерении количества электричества, затраченного на электрохимическое превращение.При подаче на электроды кулонометрической ячейки соответствующего потенциала происходит электрохимическое восстановление или окисление вещества. Для электрохимической реакции
Вос>0кс можно определить массу окисленного вещества Оке, если известно количество электричества, т. е. общее количество электронов, отданных восстановителем Вое, и число электронов п, отданных одной молекулой.
Согласно законам электролиза количество вещества, прореагировавшего на электроде, пропорционально количеству электричества, прошедшего через раствор: m = MIt/nP = MQ/nF, (11)
Где m — масса вещества, прореагировавшего на электроде, г; М — моль
вещества; I — сила тока, A; t — время, с; п — число электронов, принимающих
участие в электрохимической реакции; F — постоянная Фарадея, равная
96484,56±0,27 Кл-моль-1 и характеризующая количество электричества, необходимое для электрохимического превращения одного моля вещества; Q —
количество электричества, израсходованного на реакцию, Кл.
Одним из основных условий осуществления кулонометрии является протекание электрохимического процесса со 100 %-ным выходом по току, что означает равенство фактического количества вещества, вступившего в электрохимическую реакцию, его теоретическому количеству. Для этого нужно знать поляризационные кривые для всех веществ, присутствующих в растворе.
Кулонометрический анализ осуществляют либо при заданном токе, либо при заданном потенциале электрода, на котором происходит процесс.
Кулонометрия при заданной силе тока основана на измерении количества электричества, прошедшего через раствор при электрохимической реакции. Зная число электронов, требующееся для электрохимического окисления или восстановления вещества, и количество электричества, прошедшего через раствор (оно равно произведению силы тока на продолжительность его протекания), рассчитывают концентрацию определяемого компонента. При кулонометрии при заданной силе тока можно использовать как восстановительный процесс, протекающий на катоде, так и окислительный — на аноде.
В кулонометрии при постоянном потенциале измерение проводят при постоянном потенциале рабочего электрода, что максимально приближает выход реакции по току к 100 % и полностью избавляет от побочных реакций. Для поддержания постоянного потенциала рабочего электрода используют специальное устройство — потенциостат и трехэлектродную схему. Третьим электродом является стандартный электрод сравнения — каломельный или хлорсеребряный, относительно которого измеряют и поддерживают потенциал рабочего электрода — катода или анода.
Уравнение электролиза в перемешиваемом растворе при постоянном потенциале выражается соотношением:
[pic][pic](12) где V — объем раствора, подвергаемого электролизу; Со — концентрация вещества в растворе; [pic] — толщина диффузионного слоя.
Преимущества кулонометрических газоанализаторов следующие: высокая чувствительность, широкий динамический диапазон, независимость выходного сигнала от температуры и состояния поверхности электродов, простая"конструкция, небольшие размеры и масса, возможность их абсолютной градуировки, легкость автоматизации. К недостаткам кулонометрических газоанализаторов относятся: малая избирательность, необходимость периодической смены электролита.
Рекомендуем скачать другие рефераты по теме: правовые рефераты, первый снег сочинение.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата