Обработка металлов давлением
| Категория реферата: Рефераты по металлургии
| Теги реферата: диплом, решебник 10 класс
| Добавил(а) на сайт: Jaickij.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Огромное развитие получают процессы прессования, позволяющие изготовлять профили практически с неограниченными возможностями по форме их сечения, особенно при обработке труднодеформируемых металлов и сплавов.
Область применения ковки и штамповки в современном массовом и крупносерийном производстве непрерывно расширяется и имеет тенденцию к внедрению специальных инструментов и штампов, механизации кузнечных и транспортных операций, специализации кузнечных цехов на выпуск однотипных изделий, что дает возможность осуществлять автоматизацию процессов, создавать поточные и автоматические линии производства поковок в сочетании с автоматизацией внутрицехового транспорта. В кузнечном и штамповочном производстве продолжают совершенствоваться способы нагрева металла путем применения электронагрева — индукционного и контактного.
Значительно возрастает производство изделий листовой штамповкой, особенно в сочетании со сваркой, клепкой, закаткой, что при сокращении трудоемкости сборочных работ снижает массу машин без уменьшения их прочности. Получают дальнейшее развитие холодная высадка, холодная объемная штамповка, калибровка, выдавливание и др.
Высокая производительность процессов обработки металлов давлением, сравнительно низкая их энергоемкость, а также незначительные потери металла при производстве изделий выгодно отличают их по сравнению, например, с обработкой металла резанием, когда требуемую форму изделия получают удалением значительной части заготовки в стружку. Существенным достоинством пластической обработки является значительное улучшение свойств металла в процессе деформирования.
Динамичный и пропорциональный рост черной и цветной металлургии, производство изделий из металлов и сплавов пластической обработкой основываются на дальнейшем развитии теории обработки металлов давлением, являющейся научной базой разработки технологических операций получения изделий из металлов и сплавов. Теория пластической обработки металлов позволяет оценить экономическую целесообразность принятого способа деформации, выявить влияние условий обработки на свойства получаемых изделий, определить силовые и энергетические параметры процесса и указать пути их рационального изменения, дает возможность управлять процессом обработки с точки зрения улучшения способности металлов пластически деформироваться. Знание закономерностей обработки металлов давлением помогает выбирать наиболее оптимальные режимы технологических процессов, требуемое основное и вспомогательное оборудование и технически грамотно его эксплуатировать.
Термомеханическая обработка металла
Успехи машиностроения, строительства и других отраслей промышленности в значительной мере определяются достижениями в области металлургического производства. Повышение прочности в сочетании с достаточной пластичностью металлов и сплавов позволяют уменьшить массу, а следовательно, и стоимость сооружений и машин при их эксплуатации и во многих случаях при изготовлении. Поэтому непрерывно стремятся улучшить механические характеристики металла как в состоянии поставки, так и при последующей обработке.
Известно, что пластическое деформирование и термическая обработка меняют свойства металлов. Объединение этих операций, максимальное их сближение и создание единого процесса термомеханической обработки обеспечивают заметное повышение механических характеристик, что позволяет экономить до 15...40% металла и более или увеличить долговечность изделий.
Длительное время пластическую обработку рассматривали в основном как операцию формирования, хотя известно, что 10...20% энергии, затрачиваемой на деформацию, идет на увеличение внутренней энергии дефектов кристаллической решетки. Перед окончательной термической обработкой от этой накопленной энергии освобождались и только после этого выполняли термические операции, приводившие металл к метастабильному состоянию с высокой прочностью и вязкостью. Между тем совмещение пластической деформации и фазовых (структурных) превращений или их сочетание в определенной последовательности вызывает повышение плотности дислокации, изменяет наличие вакансий и дефектов упаковки и может быть использовано для создания оптимальной структуры металла и формирования важнейших свойств — прочности и вязкости. Это совмещение пластической деформации и термического воздействия, целью которого является формирование требуемой структуры обрабатываемого тела, называют термомеханической обработкой (ТМО).
При ТМО оба процесса — пластическая деформация и термическая обработка
— могут совмещаться в одной технологической операции, но могут проводиться
с разрывом по времени. Однако фазовые превращения при этом должны
выполняться в условиях повышенной плотности дефектов решетки, возникающих
благодаря пластической деформации металла. В условиях ТМО сочетание
пластической и термической обработок для разных материалов определяется
исходным структурным состоянием, чувствительностью к этим воздействиям и
последствиям воздействия.
ТМО стали выполняется главным образом по трем схемам: высокотемпературная (ВТМО), низкотемпературная (НТМО) и предварительная термомеханическая обработка (ПТМО).
ВТМО — термообработка с деформационного нагрева с последующим низким
отпуском. Контролируемая прокатка, являясь разновидностью ВТМО, представляет собой эффективный способ повышения прочности, пластичности и
вязкости низколегированных сталей. Основная идея этого вида обработки
заключается в подборе режимов прокатки и охлаждения после прокатки, что
обеспечивает получение мелкого и однородного зерна в готовом прокате.
Наиболее успешно это достигается понижением температуры прокатки в
последних трех — пяти проходах до 780...850°С при увеличении степени
деформации до 15...20% и выше за проход.
НТМО заключается в нагреве стали до 1000...1100°С, быстром охлаждении до температуры метастабильного состояния аустенита (400...600°С) и высокой степени (до 90% и выше) деформации при этой температуре. После этого выполняется закалка на мартенсит и отпуск при 100…400°С. Этот способ применим к легированным сталям.
ПТМО характерна простотой выполнения технологического процесса: холодная пластическая деформация (повышает плотность дислокаций), дорекристаллизационный нагрев (обеспечивает полигонизацию структуры феррита), закалка со скоростного нагрева, отпуск, При этом перерыв между холодной деформацией и нагревом под закалку не регламентируется, что значительно упрощает технологический процесс ПТМО.
Операция ускоренного охлаждения после прокатки или другого вида пластической деформации также представляет собой термомеханическую обработку. Поэтому эта операция приобретает в ряде случаев важное значение как с точки зрения улучшения структуры металла, а следовательно, и механических свойств, так и влияния на понижение окалинообразования и обезуглероживания.
Прокатка металлов
Прокатка металлов является таким видом пластической обработки, когда
исходная заготовка обжимается вращающимися валками прокатного стана в целях
уменьшения поперечного сечения заготовки и придания ей заданной формы.
Существует три основных способа прокатки:
. продольная,
. поперечная,
. поперечно-винтовая (или косая).
При продольной прокатке деформирование заготовки осуществляется между
вращающимися в разные стороны валками. Оси прокатных валков и
обрабатываемой заготовки параллельны (или пересекаются под небольшим
углом). Оба валка вращаются в одном направлении, а заготовка круглого
сечения — в противоположном. В процессе поперечной прокатки обрабатываемая
заготовка удерживается в валках с помощью специального приспособления.
Обжатие заготовки по диаметру и придание ей требуемой формы сечения
обеспечиваются соответствующей профилировкой валков и изменением расстояния
между ними. Данным способом производят изделия, представляющие собой тела
вращения (шары, оси, шестерни и пр.).
Поперечно-винтовая или косая прокатка выполняется во вращающихся в одном направлении валках, установленных в прокатной клети под некоторым углом друг к другу. Станы косой прокатки используют при производстве труб, главным образом для прошивки слитка или заготовки в гильзу. В момент соприкосновения металла с вращающимися валками, имеющими наклон к оси обрабатываемой заготовки, возникают силы, направленные вдоль оси заготовки, и силы, направленные по касательной к ее поперечному сечению. Совместное действие этих сил обеспечивает вращение, втягивание обрабатываемой заготовки в суживающуюся щель и деформирование.
Металлургическая промышленность России выпускает разнообразные виды проката, отличающиеся по форме поперечного сечения и размерам. Все эти изделия перечень которых называется сортаментом, как правило, стандартизованы.
Хотя сортамент прокатных изделий весьма обширен, все же представляется
возможным весь прокат разбить на следующие основные четыре группы:
сортовой, листовой, трубы, специальные виды проката (бандажи, колеса, периодические профили и пр.). Наиболее разнообразной является группа
сортового проката, который подразделяется на простые и фасонные профили.
Прокат в виде круга, квадрата, полос плоского сечения относится к простым
профилям. Прокат сложного поперечного сечения относится к фасонным
профилям. В зависимости от назначения фасонные профили подразделяются на
профили общего или массового потребления (угловой профиль, швеллеры, двутавровые балки, шестигранные профили и др.) и профили специального
назначения (рельсы железнодорожные широкой и узкой колеи, рельсы
трамвайные, профили сельскохозяйственного машиностроения, электропромышленности, нефтяной промышленности и др.). В прокатных цехах
производят более 1600 размеров простых профилей, более 1100 фасонных
профилей общего потребления и примерно 1350 размеров профилей специального
назначения.
Весь сортовой прокат подразделяется на четыре группы: сталь крупносортная, сред несортная, мелкосортная и катанка диаметром от 5,5 до 9 мм.
Рекомендуем скачать другие рефераты по теме: образец курсовой работы, новейшие рефераты.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата