Термическая обработка и термомеханическая обработка обсадных труб из стали 36Г2С
| Категория реферата: Рефераты по металлургии
| Теги реферата: сочинение сказка, реферат на тему земля
| Добавил(а) на сайт: Руслана.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
|Категори|Химический состав, % |
|я | |
|прочност| |
|и (марка| |
|стали) | |
| |С |Mn |Si |Cr |Ni |Mo |W |S |Р |
| | | | | | | | |макс |макс |
|А |0,18-0|0,3-0,|0,15-0|- |- |- |- |0,045 |0,045|
| |,25 |6 |,23 | | | | | | |
|С |0,3-0,|0,65-0|0,2-0,|- |- |- |- |0,045 |0,045|
| |37 |,9 |35 | | | | | | |
|Д |0,43-0|0,7-0,|0,15-0|- |- |- |- |0,045 |0,045|
| |,53 |9 |,3 | | | | | | |
|К |0,32-0|1,5-1,|0,4-0,|- |- |- |- |0,045 |0,045|
| |,43 |6 |7 | | | | | | |
| |0,33-0|0,75-1|0,17-0|0,4-0,|0,4-0,|0,3-0,|- |0,045 |0,045|
| |,43 |,05 |,37 |7 |7 |4 | | | |
| | | | | | | | | | |
|Е | | | | | | | | | |
| |0,43-0|1,15-1|0,25-0|0,4-0,|0,3-0,|0,05-0|- |0,045 |0,045|
| |,48 |,4 |,35 |7 |7 |,15 | | | |
| |0,35-0|0,7-0,|0,15-0|- |- |- |- |0,045 |0,045|
| |,42 |9 |,3 | | | | | | |
|Л |0,32-0|1,4-1,|0,4-0,|- |- |- |0,25-0|0,045 |0,045|
| |,38 |8 |7 | | | |,4 | | |
| |0,3-0,|1,25-1|0,4-0,|- |- |- |- |0,045 |0,045|
| |43 |,6 |7 | | | | | | |
|М |0,32-0|1,5-1,|0,4-0,|- |- |- |- |0,045 |0,045|
| |,43 |8 |7 | | | | | | |
Для получения труб более высоких категорий прочности возможны два пути [4]:
1)применение легированных сталей с последующей сравнительно простой
термической обработкой (нормализация или нормализация и отпуск);
2)применение простых углеродистых или низколегированных сталей с
последующей закалкой и отпуском.
4.Технологическая схема производства обсадных труб
Технология производства труб нефтяного сортамента определяется видом труб, категорией прочности и применяемым для их изготовления материалом. По
категории прочности трубы нефтяного сортамента можно разделить на три
группы: обычной прочности с пределом текучести до 490,3 Мн/мІ (50 кг/ммІ), высокой прочности с пределом текучести 539,3-735,5 Мн/мІ (55-75
кг/ммІ), особо высокой прочности – более 735,5 Мн/мІ(75 кг/ммІ).
Рисунок 2.- Технологическая схема производства обсадных труб
Обсадные трубы обычной прочности с минимальным пределом текучести до
490,3 Мн/мІ (50 кг/ммІ) изготавливают по следующей технологической схеме
(рис.2). Горячая прокатка 1, обрезка концов и снятие фасок 2, нарезка
резьбы 9, навёртка муфт 10, гидроиспытание 11 и покраска 12. Термическая
обработка этих труб (нормализация) производится только в случае получения
неудовлетворительных механических свойств. Опыт эксплуатации труб категории
прочности К (минимальный предел текучести 490,3 Мн/мІ (50 кг/ммІ)
)показывает, что трубы этой категории необходимо подвергать нормализации, так как эти трубы имеют неравномерные механические свойства по длине
вследствие местной подкалки при прокатке.
Обсадные трубы высокой прочности в зависимости от применяемого материала
могут изготавливаться по двум технологическим схемам. Для легированных
сталей технологическая схема следующая: после прокатки 1 и обрезки концов 2
трубы подвергают нормализации в печи 3 и отпуску в печи 5. Иногда для труб
категории прочности Е применяют нормализацию с прокатного нагрева. После
термической обработки трубы калибруют по наружному диаметру 6. Однако в
этом случае операцию калибровки опускают вследствие отсутствия
калибровочных станов в потоке печей и после термообработки трубы направляют
прямо на правильные станы 7. После правки контролируют состояние наружной
поверхности труб 8, нарезают резьбу 9 и навинчивают муфты 10. Трубы с
муфтой проверяют на прочность и герметичность резьбового соединения путём
гидравлических испытаний на прессах 11. После гидроиспытаний трубы
окрашивают, маркируют и направляют на склад готовой продукции.
Технологическая схема изготовления высокопрочных труб из углеродистых и низколегированных сталей отличается от описанной выше только термической обработкой. После обрезки концов на станках 2 трубы нагревают до температур закалки в печи 3, охлаждают в специальных устройствах 4 и затем подвергают отпуску в печи 5. При применении закалки и отпуска вследствие искажения точности поперечного сечения и увеличения кривизны операции калибровки и правки обязательны. Для снижения прочности материала труб при калибровке и правке эти операции должны выполняться при температурах 200-500єC. После правки труб выполняют операции, обозначенные на рис.2 позициями 8-12.[2]
5.Термическая обработка обсадных труб из стали 36Г2С
Термическая обработка – важнейшая составная часть технологии производства различных видов стальных труб.
Основные цели термической обработки труб следующие: обеспечение различных эксплуатационных свойств (трубы для добычи нефти и газа, трубы для котлов теплоэнергетических установок и др.); подготовка структуры и свойств для дальнейшей обработки в различных областях машиностроения (трубы для подшипников); восстановление пластичности металла для возможности дальнейшего деформирования в процессе передела (трубы промежуточных размеров); создание диффузионной связи между различными слоями в биметаллических, многослойных и свертных паяных трубах; выравнивание структуры и свойств металла сварных и литых труб переменной геометрии по длине (например, бурильных труб с высаженными концами).[5]
5.1.Нормализация труб
При производстве труб нефтяного сортамента нормализацию как термическую операцию применяют в тех случаях, когда требуемые механические свойства металла труб (предел текучести до 539,4 Мн/мІ (55 кг/ммІ) можно получить из стали простой, дешёвой марки типа 36Г2С).
Нормализацию труб следует производить после полного их потемнения после прокатки. В этом случае крупнозернистая и неоднородная структура стали, полученная в результате высокого нагрева перед прокаткой, подвергается по существу перекристаллизации в процессе охлаждения и последующего нагрева под нормализацию.
Температура нормализации труб марки 36Г2С находится в пределах 830-
890єC. Если после нормализации предел текучести или предел прочности ниже
обусловленных ГОСТом норм, то температуру повторной нормализации следует
повысить на 20-30єC. Неудовлетворительные результаты испытаний по
относительному удлинению, относительному сужению или ударной вязкости можно
исправить снижением температуры на 20-30єC.
Заметное влияние на изменение механических свойств оказывает скорость охлаждения труб. Для труб из стали 36Г2С применение ускоренного охлаждения обдувкой воздухом повышает предел прочности высаженных концов на 4,5%, предел текучести на 5,4%, ударную вязкость на 13,7%, относительное удлинение практически остаётся без изменения.
Точные режимы термической обработки устанавливают при помощи лабораторных и цеховых экспериментов с учётом термической характеристики печи, условий охлаждения и специфичности свойств данной стали. Температура нормализации для стали данной марки должна быть достаточно высокой, чтобы обеспечить получение гомогенно-бейнитной структуры, являющейся основой для получения после отпуска высоких прочностных и пластических свойств.
Если температура нормализации является универсальной для стали данной марки, то температуру отпуска часто устанавливают индивидуально для отдельной плавки в зависимости от её химсостава.
Контроль температуры труб при нагреве и выдержке в методических печах производят термопарой, вставляемой в трубу. Температура печи контролируется по боковым и сводовым термопарам, а температура выдаваемых труб – с помощью оптического пирометра или других приборов. Боковые термопары устанавливают так, чтобы их показания были выше температуры металла на 20-30єC.
На величину зерна и механические свойства нормализуемых труб, кроме температуры нагрева металла и скорости охлаждения, оказывает также влияние время нагрева и выдержки металла в печи. Для получения мелкозернистой структуры время выдержки не должно превышать определённо величины.
Общая продолжительность нагрева в методических печах с наклонным подом для труб с толщиной стенки от 7 до 30 мм колеблется от 70 до 140 мин, время выдержки от 10 до 25 мин. Меньшее время соответствует трубам меньшими стенкой и диаметром.
Нормализация с охлаждением на воздухе обсадных труб из стали 36Г2С не обеспечивает требований ГОСТа на обсадные трубы марки Е.
Рисунок 3.- Микроструктура стали 36Г2С после нормализации.Ч400
Микроструктура металла таких труб (рис.3) состоит из крупных, строчечно- расположенных выделений феррита и сорбитообразного перлита. Такая структура свидетельствует о недостаточном охлаждении труб при нормализации. Пределы прочности и текучести имеют низкое значение. Более сильное охлаждение в производственных условиях струёй сжатого воздуха повышает предел прочности и относительное удлинение, однако предел текучести при этом находится на границе норм.
Макроструктура этой стали после охлаждения струёй сжатого воздуха
(рис.4) имеет более мелкое зерно, направленность структурных составляющих
отсутствует.
Рисунок 4.-Микроструктура стали 36Г2С после охлаждения струёй сжатого воздуха.Ч400
Возможно, что достаточно сильное охлаждение по всей длине труб при
условии их вращения позволит наладить получение обсадных труб из стали
36Г2С марки Е. Об этом свидетельствует мелкозернистая микроструктура стали
(рис.5), полученная при интенсивном охлаждении патрубков струёй воздуха.
Соответствующие этой структуре механические свойства надёжно гарантируют
получение обсадных труб марки Е.
Рекомендуем скачать другие рефераты по теме: план реферата, шпаргалки по истории россии.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата