Билеты по биологии для 10-11 классов
| Категория реферата: Рефераты по науке и технике
| Теги реферата: курсовые работы, реферат египет
| Добавил(а) на сайт: Hariton.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Основной задачей генетики является изучение следующих проблем: 1. Хранение наследственной информации. 2. Механизм передачи генетической информации от поколения к поколению клеток или организмов. 3. Реализация генетической информации. 4. Изменение генетической информации (изучение типов, причин и механизмов изменчивости).
Кроме того, генетика призвана решать и практические задачи, такие, как: 1. Выбор наиболее эффективных типов скрещивания (отдаленная гибридизация, не родственные или близкородственные скрещивания разных степеней) и способов отбора (индивидуальный, массовый ) 2. Управление развитием наследственных признаков. 3. Искусственное получение новых наследственно измененных форм растений и животных. 4. Разработка методов использования генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений, а в перспективе и внедрение этих методов в генетику растений, животных и даже человека.
Гибридологический метод Гибридологический метод. Основной метод, который Г. Мендель разработал и положил в основу своих опытов, называют гибридологическим. Суть его заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга по одному или нескольким признакам. Поскольку потомков от таких скрещиваний называют гибридами, то и метод получил название гибридологического.
Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, то есть растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому признаку. (В каждой из чистых линий сохранялась однородная совокупность генов). Другой важной особенностью гибридологического метода было то, что Г.Мендель наблюдал за наследованием альтернативных (взаимоисключающих, контрастных) признаков. Например, растения низкие и высокие; цветки белые и пурпурные; форма семян гладкая и морщинистая и т.д. Не менее важная особенность метода — точный количественный учет каждой пары альтернативных признаков в ряду поколений. Математическая обработка опытных данных позволила Г.Менделю установить количественные закономерности в передаче изучаемых признаков. Очень существенно было то, что Г.Мендель в своих опытах шел аналитическим путем: он наблюдал наследование многообразных признаков не сразу в совокупности, а лишь одной пары альтернативных признаков. Гибридологический метод лежит в основе современной генетики.
Единообразие первого поколения. Правило доминирования. Г.Мендель проводил опыты с горохом — самоопыляющимся растением. Он выбрал для эксперимента два растения, отличающихся по одному признаку: семена одного сорта гороха были желтые, а другого — зеленые. Поскольку горох, как правило, размножается самоопылением, в пределах сорта нет изменчивости по окраске семян. Учитывая это свойство, Г.Мендель искусственно опылил это растение, скрестив сорта, отличающиеся цветом семян. Независимо от того, к какому сорту принадлежали материнские растения, гибридные семена первого поколения оказались только желтыми. Следовательно, у гибридов проявляется только один признак, признак другого родителя как бы исчезает. Такое преобладание признака одного из родителей Г.Мендель назвал доминированием, а соответствующие признаки доминантными. Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными, В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской.
Расщепление признаков у гибридов второго поколения. Из гибридных семян гороха Г.Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он во втором поколении получил 6022 желтых и 2001 зеленое семя, т.е. 3/4 гибридов имели желтую окраску и 1/4 — зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось близким к 3:1. Такое явление он назвал расщеплением признаков. Г.Менделя не смутило, что реально обнаруженные им соотношения потомков немного отклонялись от отношения 3:1. Далее, изучая статистическую природу закономерностей наследования, мы убедимся в правоте Менделя.
Сходные результаты во втором поколении дали многочисленные опыты по генетическому анализу других пар признаков. Основываясь на полученных результатах, Г.Мендель сформулировал первый закон — закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения имеет рецессивный признак, три четверти — доминантный.
Анализирующее скрещивание. При полном доминировании среди особей с доминантными признаками невозможно отличать гомозиготы от гетерозигот, а в этом часто возникает необходимость (например, чтобы определить, чистопородна или гибридна данная особь). С этой целью проводят анализирующее скрещивание, при котором исследуемая особь с доминантными признаками скрещивается с рецессивной гомозиготной. Если потомство от такого скрещивания окажется однородным, значит, особь гомозиготная (ее генотип АА). Если же в потомстве будет 50% особей с доминантными признаками, а 50% — с рецессивными, значит, особь гетерозиготная.
ВОПРОС 2.
Биогеоценоз— целостная самовоспроизводящаяся система. Сообщество живых организмов и абиотическая среда влияют друг на друга, обе части биогеоценоза необходимы для поддержания жизни. Абиотические факторы регулируют существование и жизнедеятельность популяций. В то же самое время эти факторы находятся под постоянным влиянием самих живых организмов. Важные для жизни химические элементы (С, Н, О, N, Р) и органические соединения (углеводы, белки, жиры) образуют непрерывный поток между живым и неживым: потребление и выделение углекислого газа, кислорода, воды, образование и разложение растительного и животного опада, образование почвенных органических соединений. Живые организмы черпают из среды жизненные ресурсы (например, кислород из атмосферы в процессе дыхания и углекислый газ в процессе фотосинтеза). Они поставляют в среду продукты жизнедеятельности (например, кислород в процессе фотосинтеза я углекислый газ в процессе разложения органических веществ и дыхания). Солнечная энергия аккумулируется зелеными растениями и передается организмам всех популяций, населяющих биогеоценоз. Потоки энергии и вещества, связывающие живые организмы друг с другом и средой их обитания, обеспечивают целостность биогеоценозов. Способность организмов к размножению, наличие в среде пищи и энергии, необходимых для роста, развития и размножения, а также воссоздание среды (Питания живыми организмами — условия самовоспроязводства биогеоценозов (экосистем).
БИЛЕТ№19
ВОПОС 1.
Моногибридное скрещивание. Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, то есть растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому признаку. (В каждой из чистых линий сохранялась однородная совокупность генов). Другой важной особенностью гибридологического метода было то, что Г.Мендель наблюдал за наследованием альтернативных (взаимоисключающих, контрастных) признаков. Например, растения низкие и высокие; цветки белые и пурпурные; форма семян гладкая и морщинистая и т.д. Не менее важная особенность метода — точный количественный учет каждой пары альтернативных признаков в ряду поколений. Математическая обработка опытных данных позволила Г.Менделю установить количественные закономерности в передаче изучаемых признаков. Очень существенно было то, что Г.Мендель в своих опытах шел аналитическим путем: он наблюдал наследование многообразных признаков не сразу в совокупности, а лишь одной пары альтернативных признаков. Гибридологический метод лежит в основе современной генетики.
Единообразие первого поколения. Правило доминирования. Г.Мендель проводил опыты с горохом — самоопыляющимся растением. Он выбрал для эксперимента два растения, отличающихся по одному признаку: семена одного сорта гороха были желтые, а другого — зеленые. Поскольку горох, как правило, размножается самоопылением, в пределах сорта нет изменчивости по окраске семян. Учитывая это свойство, Г.Мендель искусственно опылил это растение, скрестив сорта, отличающиеся цветом семян. Независимо от того, к какому сорту принадлежали материнские растения, гибридные семена первого поколения оказались только желтыми. Следовательно, у гибридов проявляется только один признак, признак другого родителя как бы исчезает. Такое преобладание признака одного из родителей Г.Мендель назвал доминированием, а соответствующие признаки доминантными. Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными, В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской. Таким образом, Г.Мендель обнаружил единообразие по окраске у гибридов первого поколения, т.е. все гибридные семена имели одинаковую окраску. В опытах, где скрещивающиеся сорта отличались и по другим признакам, были получены такие же результаты: единообразие первого поколения и доминирование одного признака над другим.
Расщепление признаков у гибридов второго поколения. Из гибридных семян гороха Г.Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он во втором поколении получил 6022 желтых и 2001 зеленое семя, т.е. 3/4 гибридов имели желтую окраску и 1/4 — зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось близким к 3:1. Такое явление он назвал расщеплением признаков. Г.Менделя не смутило, что реально обнаруженные им соотношения потомков немного отклонялись от отношения 3:1. Далее, изучая статистическую природу закономерностей наследования, мы убедимся в правоте Менделя. Сходные результаты во втором поколении дали многочисленные опыты по генетическому анализу других пар признаков. Основываясь на полученных результатах, Г.Мендель сформулировал первый закон — закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения имеет рецессивный признак, три четверти — доминантный.
ВОПРОС 2.
Цепи питания. Перенос энергии от ее источника (растений) через ряд организмов называют пищевой цепью. Все живые организмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Травоядные животные (потребители первого порядка) поедают растения, первичные хищники (потребители второго порядка) поедают травоядных, вторичные хищники (потребители третьего порядка) поедают хищников помельче. Таким образом создаются пищевые цепи из продуцентов и консументов, которые на разных этапах смыкаются с сообществом редуцентов.
Пищевые цепи разделяются на два типа. Один тип пищевой цепи начинается с растений и идет к растительноядным животным и далее к хищникам. Это так называемая цепь выедания (пастбищная). Другой тип начинается от растительных и животных остатков, экскрементов животных и идет к мелким животным и микроорганизмам, которые ими питаются.
На суше пищевые цепи первого типа состоят обычно из 3-5 звеньев, например: растения — овца — человек — трехзвенная цепь; растения — кузнечики — ящерицы — ястреб — четырехзвенная цепь; растения — кузнечики — лягушки — змеи — орел — пятизвенная цепь. Через пищевые цепи биогеоценозов суши подавляющее количество прироста растительной биомассы поступает через опад в цепи разложения.
В морях распространены такие типы цепей: фитопланктон — рыбы — хищные птицы; фитопланктон — мелкие ракообразные — рыбы, питающиеся мелкими рачками и ракообразными — хищные рыбы — хищные птицы. В водных сообществах большая часть биомассы, накопленной одноклеточными водорослями, проходит через цепь выедания и значительно меньшая включается в цепь разложения.
Экологическая пирамида. Пищевые сети каждой экосистемы имеют хорошо выраженную структуру. Она характеризуется количеством и размером организмов на каждом уровне питания. При переходе с одного пищевого уровня на другой численность особей уменьшается, а их размер увеличивается. Экологическая пирамида имеет вид треугольника с широким основанием, суживающимся кверху. В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.
При передаче энергии с одного трофического уровня на другой происходит ее потеря. С уровня на уровень переходит около 10% энергии. Можно подсчитать, что энергия, которая доходит до пятого уровня (например, до орла в цепи: растения — кузнечики — лягушки — змеи — орел ), составляет всего 0,01% энергии, поглощенной продуцентами. Таким образом, оказывается, что передача энергии с одного пищевого уровня на другой происходит с очень малым КПД. Это объясняет уменьшение числа и массы организмов на каждом последующем уровне и ограниченность количества звеньев в пищевой цепи.
БИЛЕТ№20
ВОПРОС 1.
Рекомендуем скачать другие рефераты по теме: рассказ язык, изложение 4.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата