Цифровые фильтры
| Категория реферата: Рефераты по науке и технике
| Теги реферата: курсовая работа по психологии, реферат беларусь
| Добавил(а) на сайт: Листунов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Выбираем fд = 800 Гц. Отсюда после нормирования частот W =
ПП ® [0; 0,25], ПН ® [0,375; 0,5].
Здесь Н(0) № 0, поэтому фильтр симметричный.
H(0,5wд) = 0, поэтому N - четное.
Следовательно, требуемую АЧХ необходимо продолжить на диапазон [0,5wд; wд] нечетным образом (Рис. 3.8, а).
Расчет начинается с выбора величины N.
Пусть N = 8. Отсюда интервал между выборками W1 = = 0,125.
Формула для ФЧХ (3.3): j(w) = -wT . Отсюда
j (W) = -7pW, или для частот выборки j (kW1) = -7pW1,
Отсчеты АЧХ - по требуемой АЧХ на графике Рис. 3.8, а.
Следовательно, комплексные частотные отсчеты:
Н(jkW1) = {1e j0; 1e -j0,875p ; 1e -j1,75p ; 0; 0; 0; -1e -j5,25p ; -1e -j6,125p }
Отсюда расчет импульсной характеристики по формуле обр. ДПФ
h (nT) = H (jkW1) e j (2p/N) kn =
={0,065; -0,165; 0,025; 0,53; 0,53; 0,025; -0,165; 0,065}
что соответствует схеме фильтра на Рис. 3.8, б
Расчетная формула АЧХ такого типа фильтра - (3.5).
Поэтому Н(W) = 1,06 cos pW + 0,05 cos 3pW - 0,33 cos 5pW + 0,13 cos 7pW
Результаты расчета реализованной АЧХ приведены на графике Рис. 3.8, а (штриховая линия).
В окрестности точек разрыва требуемой АЧХ (в данном примере это частоты 0,25 и 0,75) отклонение от нормы реализованных характеристик получается значительным вследствие влияния эффекта Гиббса. Ослабить влияние эффекта Гиббса удается введением весовой функции (метод взвешивания) к импульсной характеристике.
Новая импульсная характеристика формируется по правилу:
h' (nT) = W (nt) * h (nT)
Где W (nT) - весовая функция или "сглаживающее окно".
Находят применение различные типы окон, например "окно" Хэмминга:
Рекомендуем скачать другие рефераты по теме: информация реферат, доклад по физкультуре.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата