Цивилизация богов. Прогноз развития науки и техники в 21-м столетии
| Категория реферата: Рефераты по науке и технике
| Теги реферата: сочинение тарас, курсовики скачать бесплатно
| Добавил(а) на сайт: Ливия.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Хорошее качество предсказания пространственной структуры белковых молекул давал метод математического моделирования. Этот метод основывался на анализе всех вариантов взаимодействия отдельных атомов между собой в процессе сворачивания известной первичной структуры белка в определенных условиях. За основу брался постулат, что искомая пространственная структура должна обладать минимумом свободной энергии. Данный метод требовал применения суперкомпьютеров мощностью в одну тысячу Терафлоп и более. На практике использовались математические модели с заданным приближением к истинной пространственной структуре белковой молекулы.
Оригинальным методом, упрощающим задачу сопоставления функциональных звеньев «белок – биохимическая реакция», был метод моделирования взаимодействия двух и более свернутых белковых молекул, на основе взаимодействия их выделенных активных комплексов. Данный метод применялся в компьютерном моделировании при изучении взаимодействия белковых молекул между собой, а также с различными химическими соединениями. Выделение в каждой белковой молекуле активного комплекса, принимающего участие в химических реакциях, позволяло при математическом моделировании учитывать около десяти процентов от всего количества атомов данной белковой молекулы, что в тысячи раз уменьшало объем необходимых вычислений и сокращало время использования суперкомпьютеров.
Во многих случаях сама природа помогала ученым, подсказывая более простые пути решения поставленных задач. Зачастую для сопоставления групп генов и кодируемых ими белковых молекул, а также сопоставления белков и биохимических реакций, не требовалось проводить сложные исследования и расчеты с использованием генетического и цитологического материала человека. Требовалось просто обратиться к знаниям, полученным при расшифровке геномов и изучении белков микроорганизмов, грибов, дрожжей и растений. Учитывая то, что все формы жизни на нашей планете используют единый генетический и аминокислотный код, и тот факт, что при всем многообразии своих творений Природа лучшие эволюционные находки тиражирует во многих видах организмов, многие интересующие ученых ответы можно было получить при изучении простейших организмов.
Как правило, геном простейших организмов содержал меньшее количество генов, чем геном человека. Количество синтезируемых белков и биохимических реакций, присущих этим организмам также было меньше, чем в организме человека, что значительно облегчало научные исследования. Многообразие живых существ на Земле и впечатляющая приспособляемость их к различным условиям обитания давали хорошие шансы на обнаружение большинства специализированных белков и ключевых биохимических реакций в более простых формах земной жизни. Примером этого может служить тот известный факт, что ферменты человеческого организма, выполняющие достаточно специализированные функции, могут быть обнаружены во многих микроорганизмах, где изучать их свойства гораздо проще, чем в человеческом организме. Конечно, полное соответствие случалось далеко не всегда, поэтому результаты исследований применялись к белкам человеческого организма с учетом специфики более сложного метаболизма, свойственного человеку.
Всестороннее изучение причинно-следственных связей типа «белок – биохимическая реакция» привело, помимо всего прочего, к углубленному исследованию самих биохимических реакций, а также их последовательностей, этих важнейших составляющих процессов жизнеобеспечения в живой клетке. Непрекращающийся процесс реализации индивидуальной совокупности биохимических реакций является целью и главной функцией любой живой клетки. Теоретически, зная назначение любой специализированной клетки, обратным счетом можно определить и цепочку биохимических реакций, составляющих клеточную функцию. Конечно, это невозможно сделать с нуля, не имея серьезной теоретической базы. Но к рассматриваемому периоду времени человечество уже владело необходимыми знаниями о строении живой клетки, механизмах её функционирования, о структуре, составе и свойствах клеточных составляющих. Как кусочки мозаики, все новые и новые знания, нарабатываемые различными научными дисциплинами, заполняли белые пятна на общей карте строения и функционирования клетки.
К этому времени уже существовало несколько компьютерных моделей живой клетки, которые были разработаны как в рамках государственных программ, так и благодаря частной инициативе. Некоторые из них были размещены на серверах для свободного пользования, к другим имели доступ только разработчики. Компьютерные модели клеток человеческого организма разрабатывались под разные потребности, зачастую по специфическим заказам и характеризовали несколько десятков специализированных клеток, что являлось значительным шагом естественных наук вперед. Все компьютерные модели были неполными, однако, их детализация и достоверность были достаточными для решения многих задач фармакологии, биохимии, генетики. Для многих задач, встающих перед учеными, совсем не обязательно было моделировать все элементы клетки или моделировать их с высокой степенью детализации. Лучшие из существующих моделей имели степень детализации для отдельных клеточных составляющих на уровне атомов, для большинства белковых молекул на уровне активных комплексов, а значительная часть второстепенных составляющих описывалась как набор параметров. Помимо этого многие компоненты клетки были совсем не исследованы, либо еще вовсе не известны. Несмотря на отсутствие полных знаний, наука подошла вплотную к созданию компьютерной модели неспециализированной клетки человека, как закономерному развитию имеющихся наработок.
Полная компьютерная модель неспециализированной клетки человека должна была объединить все существующие компьютерные модели различных клеток, а также множественные компьютерные модели белков и других клеточных составляющих. Эту большую работу начал осуществлять международный коллектив ученых, объединивший лучших профессионалов национальных и частных компаний. Полная компьютерная модель живой клетки изначально разрабатывалась с расчетом на свободный к ней доступ и возможность интерактивной работы. Каждый из специалистов, независимо от страны проживания, имел возможность пополнить данную модель собственной важной информацией и вскоре увидеть ее уточненной на основе этой информации. Высокая степень сложности живой клетки требовала постоянного применения сверхмощных компьютеров для построения и уточнения клеточной модели. Таких компьютеров на планете имелось уже большое количество. К тому же любые учреждения, организации и рядовые пользователи могли в любое время через глобальную сеть задействовать свободные компьютерные ресурсы для совершенствования модели живой клетки. Подобное активное отношение к решению общечеловеческих проблем приветствовалось и поощрялось общественным мнением. Таким образом, в создании компьютерной модели клетки человека участвовали все желающие, без каких- либо запретов или ограничений. Суммарная мощность постоянно включенных компьютеров составляла в среднем одну тысячу Терафлоп, чего в принципе было достаточно для уточнения интерактивной модели живой клетки в режиме реального времени, в режиме поступления новых знаний.
Даже первый далеко несовершенный вариант общедоступной компьютерной модели практически сразу повысил эффективность текущих научных исследований и разработок. Специалисты десятков профессий, имеющие светлые головы и новые теории, но не имеющие в достатке денежных средств на собственные исследования, получили равные шансы на воплощение своих разработок.
От базового варианта компьютерной модели неспециализированной человеческой клетки в конце десятилетия отпочковалось несколько упрощенных моделей, предназначенных для решения более узких задач. Биохимики, например, работали с моделью, которая представляла живую клетку как набор взаимосвязанных химических реакций. Цитология получила модель, в которой клетка была представлена как объект со стабильно повторяющимися функциями, выполнение которых задавалось клеточными компонентами. Генетиков интересовал механизм включения (активации) генов в процессе жизнедеятельности клетки, они рассматривали модель живой клетки с точки зрения очередности отработки генами своих программ.
Эксперименты на живой клетке всегда были связаны со значительными трудностями и неудобствами, а зачастую были просто неэффективны. Устойчивые взаимосвязи между клеточными компонентами и биохимическими реакциями, которые требовалось определить в ходе экспериментов, во многих случаях просто терялись среди огромного числа разнообразных взаимосвязей между клеточными компонентами, химическими соединениями и продуктами химических реакций, находящимися в клетке. Человек не в силах был эффективно анализировать большие количества экспериментальных данных и выделять среди них важнейшие, поэтому подключался к работе с информацией на стадии обобщений и анализа закономерностей и тенденций. Компьютер же никогда не теряющий ни капли информации, любые самые незначительные данные учитывал при построении компьютерной модели и был незаменим на этапе учета и первичной обработки экспериментального материала.
Задача построения полной компьютерной модели живой клетки человека, являлась самой сложной из задач, которые приходилось решать человечеству за всю историю научных исследований. Точное знание (истина) о принципах и механизмах функционирования и устройства живой человеческой клетки давало человечеству реальные рычаги переустройства мироздания. Полная компьютерная модель клетки человеческого организма содержала в себе огромный потенциал развития и предопределяла перспективу построения компьютерных моделей более высокого порядка – уровня функционирующих тканей, органов и организма в целом. Понимание законов эволюции клеточной модели давало возможность превентивно отрабатывать пока еще теоретические представления об оптимизации, улучшении живой клетки человека, а в частных случаях конструировать элементы для оптимизации тканей, функциональных систем и всего организма в целом.
Уже первые результаты изучения метаболических реакций и продуктов внутриклеточного метаболизма привели исследователей к выводам о плохой совместимости соседствующих в клетке веществ и реакций, что ухудшало функционирование клетки в процессе ее жизнедеятельности. Поэтому вопросы оптимизации метаболических реакций и конструирования улучшенных функциональных внутриклеточных компонентов в ближайшем будущем обещали стать весьма актуальными.
Начало десятилетия было отмечено значительным ростом прикладных исследований по оптимизации значимых для человека сельскохозяйственных культур. Методы «компьютерной селекции», основанные на полной информации о генетических текстах сельскохозяйственных растений позволили создавать компьютерные оптимизированные геномы с высокой степенью достоверности. Проверка построенных компьютерных геномов на практике порой занимала больше времени, чем процессы их оптимизации и конструирования. Сроки выращивания растений составляли всего несколько месяцев, и это позволяло очень быстро отсеять неверные и опасные варианты и сосредоточить усилия на перспективных моделях. Даже первые практические результаты были ошеломляющими. Увеличение урожайности в два раза, полученное за счет улучшения генома растений естественными генами близкородственных растений при помощи методов генной инженерии, стало настоящей революцией в сельском хозяйстве. Если добавить к этому такие качества оптимизированных растений как устойчивость к неблагоприятным погодным факторам и сельскохозяйственным вредителям, а также самодостаточность в снабжении минеральными удобрениями, то становилось очевидным, что начавшиеся процессы в скором будущем могут привести к серьезным социальным последствиям в мировом масштабе. Одним из таких последствий как ожидалось, могло быть изменение экономической специализации и структуры сложившегося хозяйства многих развивающихся стран, экспортеров продуктов растительного происхождения.
К концу десятилетия новые оптимизированные сорта растений, имеющих уникальные признаки, посыпались как из рога изобилия. Растения как объект экспериментирования оказались чрезвычайно благоприятным материалом для реализации самых смелых замыслов ученых. Процесс «компьютерной селекции» новых сортов занимал в простых случаях одну две недели работы, в сложных случаях требовалось несколько месяцев. Сборка оптимизированного генома опытного растения в лабораторных условиях занимала примерно такое же время. Выращивание нового сорта на почве занимало несколько месяцев. В любом случае, от момента создания компьютерной модели оптимизированного генома до момента проверки полученных живых растений на соответствие запланированным признакам проходило не более года.
Десятки тысяч специалистов, работающих в индустрии оптимизации растений, в течение одного года работы могли поставить на мировой рынок десятки тысяч новых сортов всех известных сельскохозяйственных растений. Столь внушительный поток новых сортов растений вносил большую неопределенность в будущее сельскохозяйственного бизнеса, угрожал остаться не у дел миллионам сельскохозяйственных производителей. Бурные процессы в сельском хозяйстве пока еще сдерживались государственными институтами, а также самой необходимостью тщательных испытаний полученных растений. Существовала реальная опасность попадания в биосферу оптимизированного наследственного материала и дальнейшего его случайного внедрения в геномы тех растений и организмов, которые не предполагалось подвергать каким-либо улучшениям. Именно такое опасение стало основным сдерживающим фактором для массового внедрения оптимизированных растений. Именно поэтому каждый новый сорт подвергался продолжительным и тщательным исследованиям. В общем случае сложилась ситуация когда наука могла кардинально изменить растениеводство в сельском хозяйстве, но вынуждена была сдерживать свои возможности из-за обоснованных опасений по поводу неконтролируемого распространения оптимизированного генетического материала.
Подобные проблемы возникали также в тех отраслях, где использовались оптимизированные естественными генами дрожжи, грибы, микроорганизмы. В первую очередь это касалось перерабатывающей, пищевой и фармацевтической отраслей промышленности.
Параллельно процессу улучшения уже известных сельскохозяйственных растений в научных учреждениях многих государств, шел процесс конструирования при помощи технологий «компьютерной селекции», уже не новых сортов полезных растений, а новых видов растений, обладающих полезными множественными признаками. Работы эти предопределяли скорые серьезные преобразования в мировом сельскохозяйственном производстве. Конструирование новых видов растений являлось занятием намного более сложным, чем создание новых сортов по той причине, что требовало взаимной увязки фрагментов генетических текстов различных видов земной флоры. Для удобства работы для всех изученных растений были созданы маршрутные карты общего вида «группа генов (ген) – признак». Десятки тысяч маршрутных карт сводили к единым стандартам всю информацию, нарабатываемую разными науками. Для создания нового вида растений с заданными признаками требовалось отобрать группы отвечающих за эти признаки генов и увязать их между собой, а также с наследственным материалом базового растения. Кажущаяся простота принципа конструирования новых видов на практике обернулась сложнейшей задачей для генной инженерии, цитологии и программирования, как впрочем, любая инновационная работа, поскольку требовала учета тысяч неизвестных ранее взаимосвязей и факторов.
Разнообразие флоры на нашей планете и миллионы лет естественного отбора привели к тому, что растения заняли экологически ниши существования в широком интервале температур, влажности, освещенности, концентраций химических веществ. Поэтому вполне реальным являлось создание в ближайшем будущем новых видов растений, которые могли бы плодоносить и развиваться в любом климатическом поясе Земли, за исключением может быть Антарктиды и Крайнего Севера.
Достаточно интересно развивался процесс решения проблем, связанных с оптимизацией генома животных. Если в начале века казалось, что основной целью оптимизации генома животных есть удовлетворение потребностей человека в пище, одежде, медикаментах, то спустя всего лишь десятилетие проблема стала выглядеть иначе. Превращение сельскохозяйственных животных в узкоспециализированные биологические машины по производству продуктов питания и фармацевтических препаратов, которое являлось технически выполнимым и реальным, было отложено на неопределенный срок.
В основу такого решения были положены этические и практические соображения. Фантастические возможности генетики вступили в противоречие с этикой и моралью человеческого общества. Защищенные здоровым консерватизмом, нравственные ценности человечества определяли взвешенное и осторожное отношение к революционным переменам в любой сфере жизнедеятельности человека. Вмешательство в генотип животных, особенно млекопитающих, затрагивало сложившуюся систему нравственных ценностей, обесценивало в глаза общественности самого человека. К тому же значительная часть населения Земли считала человека созданием божьим.
Помимо этого существовала известная опасность попадания оптимизированного наследственного материала в генотипы иных видов животных с возможными негативными последствиями. Еще одной неприятной стороной проведения опытов на животных была необходимость уничтожать многочисленные неудачные образцы, многие из которых могли быть успешно использованы в фильмах ужасов. Многочисленные аргументы, призывающие к осторожности, сформировали общественное мнение, которое выражалось в старой русской пословице «Семь раз отмерь, один раз отрежь».
Одновременно зародилась новая концепция, которая в ближней перспективе могла привести к решению проблемы оптимизации генома животных для удовлетворения потребностей человека без ущемления традиционной морали и этики. Она заключалась в совершенствовании самих продуктов питания. Конечной целью, в соответствии с новой концепцией, предполагалось получение на основе оптимизированных и искусственных растений и микроорганизмов новых, ранее не существующих продуктов питания. Перед учеными была поставлена общая задача замены животной пищи (в первую очередь, конечно же, мяса) на продукты растительного происхождения. При этом автоматически накладывалось вето на ухудшение свойств новых видов продуктов. Подобная концепция дала мощный импульс наукам, связанным с изучением растений. Некоторые из морских государств разработали национальные исследовательские программы, направленные на изучение и оптимизацию морских организмов, в том числе и рыб. Эксперименты по оптимизации генома рыб оказались тем компромиссом между возможностями науки и техники, с одной стороны, и требованиями морали и этики, с другой. Финансовый капитал и научные силы, отложив на время вопросы оптимизации сельскохозяйственных животных, переключились на финансирование и производство работ по изучению генетического материала морских организмов.
Дальнейшее решение проблемы питания человеческого общества в целом с позиций новой концепции виделось через оптимизацию генома и улучшение организма самого человека, вначале естественными генами, а позже и искусственными генами. Человек, имеющий оптимизированный геном, как представлялось, будет довольствоваться гораздо меньшим объемом пищи и использовать пищу с более высоким КПД. В дальнейшем предполагалось, что категории пища и энергия все более будут отдаляться друг от друга.
Современный человек нуждается в больших количествах белка для строительства и ремонта своего организма. Энергетические потребности организма человека традиционно покрываются за счет жиров и углеводов. Питание улучшенного человека будущего будет направлено на удовлетворение этих же потребностей, то есть на поддержание структуры собственного тела в работоспособном состоянии и на получение энергии для обеспечения метаболизма. Необходимая энергия при этом может быть получена за счет переработки новых энергетических веществ, новых энергетических пищевых продуктов, а снабжение белком, возможно, будет заменено снабжением аминокислотами, которые в несвязанном виде будут присутствовать в таких продуктах.
Практическое применение знаний о механизмах реализации наследственной информации способствовало решению многих медицинских проблем. К концу второго десятилетия при помощи новых лекарств индивидуального и узконаправленного действия стало возможным излечивать непосредственно в организме человека большинство известных наследственных заболеваний. Для некоторых наследственных заболеваний не были созданы эффективные лечебные препараты по причине редкого проявления этих заболеваний. Во многих случаях последнее слово оставалось за экономикой, поскольку затраты на исследования и разработку новых лекарств не приводили к последующей окупаемости затраченных средств по причине отсутствия массового спроса на эти лекарства.
Рекомендуем скачать другие рефераты по теме: индия реферат, учебный реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата