Эволюция представлений о пространстве
| Категория реферата: Рефераты по науке и технике
| Теги реферата: доклад на тему биология, баллов
| Добавил(а) на сайт: Mitrofanij.
Предыдущая страница реферата | 1 2
Пары координат - векторы - можно складывать и умножать на число: на плоскости определены арифметические операции над точками (векторами). Расстояние от нулевого вектора (начала координат) получило название длины (нормы) вектора: ¦x¦. Арифметизация трехмерного пространства происходит так же.
Многовековые исследования Пятого постулата Евклида в "революционной атмосфере" середины XIX века привели к приданию непротиворечивой антиевклидовой-неевклидовой геометрии статуса геометрии. См. ниже Приложение.
Следующий шаг: количество координат (размерность пространства!) перешагнуло порог наглядности, но осталось конечным. Терминология сохранилась, формулы - "удлинились". Пространство стало протяженным многообразием (Грассман).
Гаусс выбрал из трех тем, предложенных Риманом для пробной лекции, тему "О гипотезах, лежащих в основании геометрии": ему хотелось посмотреть, как проявит самостоятельность молодой человек в столь трудной игре.
Клиффорд не только перевел лекцию Римана на английский язык, но и высказал некоторые соображения:
Не происходят ли изменения физического характера вследствие изменений геометрической кривизны пространства? - Теплота, свет, электромагнитное поле могут быть связаны со свойствами геометрии пространства.
Изменения кривизны в пространстве могут быть одного из трех родов:
кривизна пространства может изменяться от точки к точке;
кривизна пространства может изменяться со временем;
кривизна пространства может изменяться обоими способами.
В физическом мире не имеет места ничего, кроме изменения кривизны пространства при том явлении, которое мы называем движением материи.
Теперь
На первое место вышли проблемы концептуального пространства.
В начале ХХ века сделан еще один шаг: число координат стало "бесконечным".
Это - (арифметическое) гильбертово пространство l2. В этом пространстве определены те же арифметические операции и определена норма вектора.
В дальнейшем Банах и Винер определили норму аксиоматически, а Колмогоров и фон Нейман ввели понятие топологического векторного пространства, отделив от ветви пространств с метрикой Пифагора ветвь топологических пространств.
Концептуальное математическое пространство конструируется с помощью аксиом как состоящее из "точек" с определенными для них отношениями. Именно для исследования этих отношений и используется то или иное пространство: n-мерное векторное пространство; гильбертово пространство l2; пространство непрерывных функций; пространство многочленов над полем коэффициентов; гильбертово пространство функций, интегрируемых с квадратом; фазовое пространство состояний объекта; пространство цветов.
Является ли такая конструкция "правильной"? Существует ли эмпирическое подтверждение или опровержение? И как нам жить с этими фикциями, то бишь абстракциями?
В математике концепция пространства эволюционировала вне связи с физикой и другими науками, но результаты этого процесса совершили в физике очередной квантовый переход и были оценены по достоинству.
Пространство в физике - носитель свойств, связанных с законами сохранения. Группам преобразований с одним непрерывным параметром, сохраняющим действие, соответствуют законы сохранения.
Концептуальное физическое пространство конструируется как оснащенное математическое пространство. Чтобы только взглянуть на эти результаты, не говоря уже об овладении ими, требуется преодолеть высокий математический - на самом деле концептуальный - барьер.
Новая трудность: метрику пространства определяет не сила тяготения (сущность), а геометрия (формула). А где же масса? А как же мы?..
Приложение
В русле размышлений о доказательстве неоднократно предпринимались
попытки доказать как теорему утверждение (постулат) Евклида о параллельных (в
формулировке Евклида: если отрезки AC и BD, лежащие по одну и ту же сторону от
отрезка AB, образуют с ним углы A и B, A+ B
Скачали данный реферат: Zinovija, Прохоров, Асаф, Podshivalov, Voroncov, Викторина.
Последние просмотренные рефераты на тему: как написать дипломную работу, сочинение на тему, реферат по дисциплине, бесплатные дипломы.
Категории:
Предыдущая страница реферата | 1 2