Генно-инженерные методы как новый биотехнологический подход в аграрном секторе США
| Категория реферата: Рефераты по науке и технике
| Теги реферата: доклад по английскому, виленкин математика 6 класс решебник
| Добавил(а) на сайт: Толстой.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
В последние 4-5 лет исключительно благодаря проекту "Геном человека", были развиты новые методы (так называемого второго и третьего поколений), которые включают как главный компонент автоматизацию большинства процессов. Например, секвенсовой технологией третьего поколения является на сегодняшний день – прямое чтение оснований в последовательности ДНК с использованием сканирующих туннельных микроскопов или микроскопов, работающих на уровне субатомного разрешения.
В результате проведённой работы за последние шесть лет были созданы мощнейшие международные банки данных о последовательностях нуклеотидов в ДНК разных организмов, в том числе и растений, (такие, как GenBank/EMBL/DDBJ) и о последовательностях аминокислот в белках (PIR/SwissPot). Любой специалист в мире может практически беспрепятственно войти в эти банки данных и воспользоваться для исследовательских целей собранной там информацией. Решение о доступности информации не было принято сразу, и потребовалась значительная работа как учёных, так и юристов и законодателей, чтобы воспрепятствовать первоначальному желанию многих фирм, особенно коммерческих, патентовать все получаемые последовательности генов, закрыть их для доступа и коммерциализировать эту научную область.
Благодаря генно-инженерным достижениям в медицинской промышленности наблюдается значительный прогресс. В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных и тратят на это десятки миллиардов долларов в год, они же монополизировали выпуск химических веществ для быта, добавок к продукции строительной индустрии… Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок.
В 90-е годы продукты биотехнологических исследований стали появляться на коммерческом рынке. Длительный инкубационный период в развитии биотехнологии сменился взрывом инвестиций, связанным с многообещающими новыми продуктами и появлением малых биотехнологических исследовательских фирм для капитализации новых технологий. Сегодня наиболее известны ряд продуктов и процессов с использованием техники рекомбинантной ДНК, применяемых в аграрном и пищевом секторе: трансплантация эмбрионов, микробное силосование, продукты ферментации с использованием дрожжей и других культур, рекомбинантные вакцины животного и растительного происхождения, моноклональные антитела для применения в диагностике, генно-инженерный фермент в производстве кукурузного сиропа, трансгенные растения и трансгенные бактерии. Огромный класс продуктов генно-инженерного происхождения – трансгенные сельскохозяйственные культуры. Первым достижением в биотехнологии растений явилось использование бактерии кишечной палочки, продуцента плазмид (носитель нескольких генов), которые вводили в почвенный микроорганизм Agrobacterium для переноса сельскохозяйственно ценных генов в растения. Многие растения оказались чувствительными к методу генетического переноса, такие как томаты, картофель, петуния, табак, морковь, тополь, сельдерей, люцерна, салат-латук, лён, масличный рапс, сахарная свекла и спаржа. Оказалось, что злаки и другие растения класса Однодольных не столь чувствительны к генетическому переносу. Именно это и определило очерёдность использования растений в генно-инженерных работах. Первоначальный выбор растений был сосредоточен на простых культурах, геном которых к этому времени был уже картирован. Эти растительные объекты рассматривались в качестве прототипов для более высокоорганизованных культур, ещё некартированных, но важных для применения в сельском хозяйстве.
В первую очередь были идентифицированы гены, которые придавали устойчивость растениям к основным классам гербицидов. В 90-е годы ряд химических и биотехнологических компаний активно включились в процесс создания культур, устойчивых к гербицидам.
Компанией "Калгене" были получены трансгенные растения томата, тополя, табака, хлопка, сои с бактериальным геном, продукт которого придал устойчивость этих растений к гербициду "Раундап".
Другая компания – "Монсанто" получила растения картофеля, хлопка, кукурузы, сои с другим бактериальным геном, продукт которого обуславливал у этих сельскохозяйственных культур устойчивость к различным, специфичным для каждого вида растений, насекомым-вредителям. В будущем учёные-генетики надеются получить растения со своим собственным репеллентом и устойчивых ко многим видам насекомых за счёт введения мульти-токсичного гена. Этой же компанией были проведены работы по устойчивости растений к вирусам. В то время как вирусы не рассматривались в качестве основной проблемы в отношении сельскохозяйственных культур, "Монсанто" провела полевые испытания на томатах и картофеле, двух культурах, для которых проблема вирусов на сегодняшний день исключительно важна.
Почти все генетически модифицированные культуры, имеющие пищевую ценность, а их набралось уже более трёх десятков, относятся к растениям умеренного климата. Это породило критику в адрес биотехнологии как практически бесполезной для засушливых регионов Африки и Азии, которые страдают от недостатка продуктов питания. Исследователи из компании "Пайониер Хай-Бред Интернэйшинэл" (Джонстон, шт.Айова), университета Пердью (Вест Лафайет, шт.Индиана) и университета г.Лодзь (Польша) удалось трансформировать культуру сорго, основного продукта питания и производства в полузасушливых тропиках. Злаковые культуры печально известны как особо трудно трансформируемые. Генетические манипуляции с ними начались в середине 90-х годов с использованием генной пушки. Применение этой технологии позволило обойти проблему отсутствия природного вектора, такого как Agrobacterium, и проблему регенерации целого растения из протопласта. С помощью генной пушки исследователям удалось ген устойчивости к гербициду биалофосу ввести в незрелый зародыш сорго. Учёные использовали новую технологию трансформации для получения сортов сорго, которые могут произрастать на бедных почвах в присутствии агрессивных сорняков. На повестке дня также получение зерна с улучшенными пищевыми свойствами, оптимизированным аминокислотным балансом и содержанием крахмала, устойчивых к вирусным заболеваниям и плесени.
Среди зерновых культур сорго занимает пятое место в мире. В некоторых странах сорго сопоставимо по значимости с пальмовыми культурами, когда используются все части растения. Например, стебель сорго может использоваться как топливо или в качестве стройматериала. Листья – на корм скоту, а зерно, которое может быть красным или коричневым, идёт на крупы или используется как сырьё в пивоваренной промышленности. Во всём мире культурой сорго засеяно около 48 млн. га, в основном в засушливых районах Африки, Индии и Китая. Сорго, как и кукуруза, произошло от диких трав. У них много общего, например, 10 хромосом. Благодаря этому сорго может служить источником генов для кукурузы, в частности, гена устойчивости к засухе.
Возможности генной инженерии в растениеводстве:
1. Получение сои, устойчивой к засухе, с помощью проб ДНК и маркёров.
2. Получение растений, устойчивых к соли, за счёт переноса генов из растений, устойчивых к соли, в растения, чувствительные к ней. Причём, как правило, повышенная устойчивость к соли сопряжена с повышением устойчивости к высокой температуре. Это даст возможность использовать новые земли для производства культур и использованию морской воды для ирригации.
3. Получение растений, устойчивых к морозу, благодаря введению генов из рыбы мелкой камбалы из Арктических морей в качестве нового антифриза для растений. Этот метод может быть применён для клубники, картофеля, вишни, персиков, которые смогут переносить холод в период цветения.
4. Получение растений в качестве нового источника энергии. Различными биотехнологическими способами можно изменить содержание лигнина, крахмала и целлюлозы у растений, которые в будущем могут использоваться в качестве горючего.
5. Получение сельскохозяйственных растений – продуцентов фармацевтических препаратов. Развёрнуты биофармацевтические исследования, нацеленные на получение растительных вакцин для человека, действующих против СПИДа, онкологических заболеваний, диарреи. Группа исследователей шт. Техас надеется получить растительные вакцины против гепатита и холеры. Уже ведутся работы по введению гена, контролирующего продукцию гормона роста человека, в растение табак.
6. Перенос генов окраски у цветковых растений. Например, гены, контролирующие голубой цвет у петунии, могут быть перенесёны в розы, красные гвоздики или хризантемы для достижения большей декоративности.
7. Создание трансгенного хлопка, продуцирующего новый пластический полимер.
Учёные надеются также получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, в частности, кукурузы, сои, картофеля, томатов, гороха, а именно белков, крахмала и растительных масел. Множественные переносы генов необходимы для достижения значительного изменения дизайна листовой пластинки для более эффективной фотосинтетической активности и способности к испарению воды, устойчивости к стрессам, вызванными влажностью и температурой, повышения урожайности основных агрономических культур.
Новые продукты и методы биотехнологии могут изменять устойчивость к климату или стрессам у культур, или их чувствительность к насекомым или болезням, распространённым в определённых регионах. Эти достижения могут изменить региональное преимущество для поражённых культур. Таким образом, при изменении регионального сельскохозяйственного производства меняется и локальный набор используемых культур.
Генно-инженерные работы в животноводстве имеют другую специфику. В настоящее время эта технология используется в основном для получения фармацевтических препаратов, применяя различные микроорганизмы в качестве источника целевых генов.
Бычий соматотропин, или гормон роста для крупного рогатого скота, был открыт 50 лет назад, но получение его в промышленности было невозможно до тех пор, пока ген гормона роста не был внедрён в бактерию, которая начала продуцировать его в больших количествах. Однако прошло ещё какое-то время, прежде чем гормон роста вышел на рынок как коммерческий продукт. У фермеров, потребителей существовали опасения по поводу побочных эффектов гормонов подобного типа. Несколько позже был получен свиной соматотропин, который приводит к изменению затрат кормов на единицу прироста массы и изменению соотношения прослойки мяса и шпига.
Работы по получению стимуляторов роста для животноводства и птицеводства методами рекомбинантной ДНК будут продолжаться в будущем по мере получения научной информации о гормональном равновесии у коммерческих животных, что должно улучшить первое поколение факторов роста (в частности, соматотропинов) и привести к получению препаратов следующих поколений. Эта вторая волна включает в себя гормон-освобождающий фактор (рилизинг-фактор), который приводит к более интенсивному синтезу самого соматотропина. Возможно, эти вещества являются более прямыми стимуляторами роста.
Первоначальные цели генетических исследований – стимуляция роста, питательная ценность, улучшение мяса и жира, а также определение генетической основы для устойчивости к болезням. Гены, стимулирующие продукцию гормона роста, были наиболее эффективны для свиней, для которых длительное применение инъекционного соматотропина было столь драматичным.
В конце 90-х годов учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов. Компании "Эмерикан Бридерс Сервис" и "Гранада Генетик" зарегистрировали клонированных телят в результате использования одной клетки 16-32 клеточного эмбриона. Первый успех в области клонирования животных буквально вскружил головы учёным-генетикам и селекционерам, работающим в этой области. Всем памятны эксперименты по клонированию знаменитых овец "Долли" и "Полли", полученных из клетки не эмбрионального происхождения, применяя методы пересадки ядер. Однако на сегодняшний день получены данные о преждевременном одряхлении клонированных овечек. Вероятно, в этих манипуляциях были затронуты генетические механизмы старения. Это говорит о том, что возможность получения нужных пород и линий животных с помощью метода клонирования далека от реализации.
Создание же трансгенных животных с определённым целевым геном – вполне достижимая цель при современном уровне технологии. Молоко – идеальное средство для производства терапевтических протеинов и вакцин. Опубликовано руководство для производства лекарств из молока трансгенных животных. Например, трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующему рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, и сам способ намного дешевле традиционного. В настоящий момент обсуждается вопрос ещё более простого способа получения этих препаратов от генетически сконструированных коз: не из молока, а из мочи, что значительно упростило бы процесс выделения и очистки препаратов.
Рекомендуем скачать другие рефераты по теме: доклад по английскому, сочинение ревизор.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата