Нефтепереработка
| Категория реферата: Рефераты по науке и технике
| Теги реферата: пушкин реферат, доклады бесплатно
| Добавил(а) на сайт: Погребняк.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Колесная мазь появилась, наверное, чуть позже, чем само колесо, но тоже достаточно давно. Прямой смысл известного афоризма: “Не подмажешь- не поедешь”, - указывает на один из самых древних способов борьбы с трением.
Сначала для этой цели использовали животные жиры. Затем появился деготь-продукт термической перегонки некоторых сортов древесины. Впоследствии этот же деготь стали гнать из каменного угля... Но промышленная революция, быстрое развитие техники выдвигали все новые задачи. Механизмы вращались все быстрее, транспортные средства все наращивали скорость, а значит, все возрастали требования к смазке. Требовались смазочные масла со все большим спектром свойств: сверхвязкие и сверхтекучие, термостойкие и неосмоляющиеся, противозадирные и противоизносные... А главное - их требовалось с каждым годом все больше. И в конце концов смазочные масла стали делать из нефти.
К тому времени химики выяснили, что углеводороды подходящей структуры имеются в тех фракциях нефти, которые выкипают при температуре выше 350 °С. Правда, эти масляные фракции есть не во всякой нефти, но подходящих сортов тоже набирается достаточно. Больше огорчало специалистов другое: углеводороды масляных фракций имеют сложную структуру, соседствуют по температурам кипения с парафинами, так что разделить их не так-то просто. В поисках наилучшей технологии пришли к перегонке мазута под вакуумом.
В основе такой перегонки лежит известный физический закон, согласно которому с понижением давления снижается и температура кипения жидкостей. Все ведь знают, что высоко в горах вода кипит при температуре ниже 100 °С, и сварить яйцо на Эвересте - проблема. Но то, что в обыденной жизни можно отнести к минусам, в нефтехимической технологии превратилось в плюс.
Если в ректификационной колонне создать вакуум, скажем 1 - 1,5 кПа, то мазут начинает испаряться при температуре ниже 350 °С. Значит, с меньшими затратами тепла и с большей точностью из него можно отогнать те узкие фракции, которые затем будут использованы для производства смазочных масел.
Это в теории. На практике же изготовление масел достаточно сложное, многостадийное производство. Сначала применяют серию очисток - в маслах очень нежелательно присутствие серы, ванадия и других минеральных примесей, имеющихся в исходной нефти. Затем надо очистить масляные фракции от парафинов - хорошее будет масло, если оно будет застывать уже при комнатной температуре!..
Полученные парафины раньше использовались для производства свеч. В настоящее время их гораздо чаще используют в бумажной, пищевой и химической промышленности. Парафинированная бумага не боится влаги, хорошо воспринимает типографскую краску и потому применяется для производства высококачественных полиграфических изделий. В парафин также “замуровывают” сыр. А химической переработкой парафинов получают синтетические жирные кислоты, которые незаменимы при производстве моющих средств.
Для снижения вязкости
Иногда при переработке тяжелых сортов нефти остаток прямой перегонки нельзя использовать в качестве топочного мазута - это уже гудрон. Содержащиеся в нем смолы делают его настолько вязким, что перекачка, транспортировка и сжигание связаны с очень большими трудностями, особенно зимой, в морозы, когда котельное топливо больше всего и нужно. Чтобы слить его из цистерн, их приходится подогревать паром или прибегать к каким-то другим хитростям.
Так вот, чтобы избежать таких трудностей, для приготовления котельного топлива из гудрона используют не обычный термический крекинг, о котором мы только что говорили, а один из его вариантов - висбрекинг. Это название тоже произошло из английского языка и содержит в себе кусочки сразу трех английских слов: viscosity -вязкость, breack -ломать, разрушать и cracking-расщепление. Таким образом, висбрекинг - это крекинг, специально используемый для снижения вязкости. Проводят его при пониженных температурах и давлениях.
Да здравствуют цеолиты!
Каталитический крекинг был открыт в 30-е годы нашего Века, когда заметили, что контакт с некоторыми природными алюмосиликатами меняет состав продуктов термического крекинга. Дополнительные исследования привели к двум важным результатам. Во-первых, удалось установить подробности каталитических превращений. Во-вторых, созрела убежденность в необходимости специально готовить катализаторы для таких химических превращений, а не искать их в природе, как это делали поначалу.
Каковы же задачи катализаторов крекинга, если формулировать их, исходя из современных представлений о механизме протекающих реакций? В самом общем виде картина следующая. Катализатор отбирает из сырья и сорбирует на себе прежде всего те молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород. Образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора. По мере роста непредельности (ненасыщенности связей) происходит полимеризация углеводородов, появляются смолы - предшественницы кокса, а затем и сам кокс. Высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др., в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными - изоалканами, аренами, алкиларенами с температурами кипения 80 - 195° С. Это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинга тяжелого сырья. Конечно, образуются и более высококипящие углеводороды фракции дизельного топлива, относящиеся к светлым нефтепродуктам.
Типичные параметры каталитического крекинга при работе на вакуум-дистилляте (фр. 350 - 500 °С): температура 450 - 480 °С и давление 0,14 - 0,18 МПа. В итоге получают углеводородные газы (20%), бензиновую фракцию (50%), дизельную фракцию (20%). Остальное приходится на тяжелый газойль или крекинг-остаток, кокс и потери.
Выход кокса может достигнуть 5%. Это накладывает особые требования на технологию крекинга, потому что по мере закоксовывания активных центров катализатор работает все хуже и в конце концов вообще прекращает выполнять свои функции. Теперь его надо регенерировать. Обычно для этого кокс с катализатора выжигают воздухом при 700 - 730 °С.
Каким требованиям должен отвечать катализатор для подобного процесса? Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло- и массообмена в реакционной зоне - ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора.
В целом же роль и задача катализаторов - повышать селективность протекающих химических реакций, увеличивая выход целевого продукта из единицы сырья. Однако применительно к каталитическому крекингу нужно сделать определенные уточнения. Целевым продуктом здесь является не просто бензин, а высокооктановый. Поэтому в самом общем виде селективность каталитического крекинга можно оценить выходом бензиновой фракции с заданным октановым числом.
Первым “рукотворным” катализатором крекинга стал алюмосиликатный формованный катализатор в виде шариков диаметром около 3 мм. В основе его был аморфный алюмосиликат, естественная пористость которого поначалу устраивала нефтепереработчиков. На смену ему пришел микросферический алюмосиликатный катализатор, частицы которого измерялись микронами. Этот пылевидный контакт положил начало использованию в каталитическом крекинге технологии взвешенного (его называют также кипящим или псевдоожиженным) слоя. Технологические усовершенствования позволили за короткий срок реализовать все преимущества, которые могли обеспечить алюмосиликатные катализаторы в части повышения селективности. А дальше дело стало из-за невозможности регулировать и определенньм образом упорядочить структуру алюмосиликата.
Выручили цеолиты. Их еще часто называют молекулярными ситами. Первоначально их применяли для разделения молекул различных углеводородов, используя различия в их пространственной структуре. Цеолиты - это практически те же алюмосиликаты, но при их изготовлении удается регулировать длину пор, их диаметр и количество на единицу объема или поверхности. Кроме того, в кристаллическую решетку алюмосиликатов можно вводить другие элементы (в основном, редкоземельные), которые модифицируют активные центры, находящиеся в определенных точках цеолита. От этого существенно зависят адсорбционные свойства цеолита - какие молекулы и с какой энергией он может адсорбировать в порах или на поверхности и какие деструктивные превращения с ними производить.
Цеолиты - это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15 - 20%.
Вид применяемых катализаторов, способ их регенерации определяет технологию, а значит и аппаратуру каталитического крекинга.
Первые установки работали на таблетированном катализаторе в периодическом режиме. В них и реакция, и регенерация загруженного неподвижного катализатора осуществлялись попеременно в одних и тех же аппаратах. Затем появились более совершенные шариковые катализаторы и установки непрерывного действия. Здесь крекинг и регенерация катализатора осуществляются уже раздельно.
Реактор такой установки представляет собой аппарат колонного типа. Сверху в него через специальное устройство поступает катализатор в виде шариков диаметром 1 - 2 мм. Шарики плотным слоем спускаются вниз, проходя постепенно реакционную зону, зону отделения продуктов крекинга и зону отпарки. Отпарка необходима для удаления углеводородов, прилипших к катализатору. Обработку паром надо делать обязательно, так как затем катализатор поступает в другой аппарат - регенератор, где с него выжигается кокс. Неудаленные углеводороды при этом простони сгорели бы, выход полезных продуктов снизился.
После выжига катализатор ссыпается в загрузочное устройство пневмоподъемника и поднимается по специальному транспортеру в бункер-сепаратор. Дело в том, что при многочисленных перемещениях, выжигах, отпарках часть шариков повреждается, образуются крошка, пыль, и их надо удалить, иначе будут нарушены условия гидродинамики, тепло- и массообмена в реакторе. Это и делают в сепараторе. К регенерированному и отсеянному катализатору добавляют для восполнения потерь свежие шарики и весь цикл повторяется.
Следующий шаг совершенствования технологии - внедрение крекинга в кипящем слое пылевидного катализатора. Его применение стало возможньм благодаря появлению принципиально новых, микросферических катализаторов на основе специально синтезированных цеолитов. Эти катализаторы хороши не только высокой активностью и селективностью. Их отличают также хорошая регенерируемость и высокая механическая прочность.
Рекомендуем скачать другие рефераты по теме: инновационный менеджмент, 6 класс контрольные работы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата