О происхождении электрического заряда
| Категория реферата: Рефераты по науке и технике
| Теги реферата: продажа рефератов, реферат сша
| Добавил(а) на сайт: Умберг.
1 2 | Следующая страница реферата
О происхождении электрического заряда
Овсейчик В.В., радиоинженер
Существует возможность выразить большинство важнейших физических параметров, включая, массу, энергию и заряд, в метрах и секундах. Это позволяет с единой точки зрения интерпретировать самые различные явления физики, в частности, существенно приблизиться к пониманию природы электричества. В первую очередь речь идет о происхождении электрического заряда.
1.1. Системы единиц, в которых инертная масса имеет размерность обратную размерности ускорения, назовем “динамическими”. Очевидно, что в этих системах стандарт энергии W11 = γ l11, где γ - безразмерный коэффициент, l11 - стандарт длины. Импульс здесь имеет размерность T, момент импульса TL, сила, - нулевую размерность. В дальнейшем будем использовать систему единиц DS1 (динамическая система единиц, использующая единицы длины и времени системы СИ). В ней W11 = l11 = 1м, стандарт силы F11 = W11/l11 = 1, стандарт импульса равен 1с, а стандарт W11 эквивалентен 1 Дж.
Эффективность использования системы DS1 обусловлена тем фактом, что стандарт энергии в СИ определяется в эксперименте, где пробное тело проходит в гравитационном поле Земли вертикальную дистанцию, равную 1м. При этом тело получает энергию 9.80665 Нм при величине силы 9.80665 Н.
1.2. Для анализа процессов в цилиндрическом проводе, когда по нему протекает электрический ток, разделим провод условно на две части: идеализированный провод, имеющий длину, близкую к средней длине свободного пробега электронов проводимости, и нагрузку, сосредоточенную в точке, которая вынесена в торец провода. Процессы будем рассматривать при согласованном режиме тока в цепи, когда сопротивление нагрузки равно сопротивлению источника тока, в качестве которого выступает идеализированный провод.
Очевидно, что энергия, расходуемая в единицу времени на ускорение электрона проводимости, прошедшего существующую в проводе относительно небольшую разность потенциалов deltaU, пропорциональна мощности такого элементарного тока:
t11(deltaU )2 z ~ W - 0.5mеvs 2 = mеvsu + 0.5mеu 2 ( 1 )
Здесь mе - масса электрона, vs - средняя скорость теплового движения электрона проводимости, u - приращение средней скорости движения электрона за счет электрического поля, W = mе(vs + u ) 2/2 - кинетическая энергия электрона проводимости в проводе после прохождения разности потенциалов deltaU, z - электрическая проводимость провода, t11 = 1с.
Для электрического тока в идеализированном проводе имеются соотношения:
I = j S = neu/(2l) = deltaU z ( 2 )
Здесь е – электрический заряд электрона, j - объемная плотность тока, I - сила тока в проводе, n - количество электронов проводимости в нем, u/2 - средняя скорость движения электрона в идеализированном проводе под действием поля (u - максимальное значение скорости, vs >> u ), l - длина провода, S - площадь поперечного сечения его.
1.3. Из соотношений (1) с учетом нулевого вклада в ток проводимости члена ±mеvsu, отражающего тепловые флюктуации, вытекает, что deltaU пропорциональна u. Это дает основу для перевода электрических параметров в механические.
Используя метод размерностей, для идеализированного провода, нагруженного на активное сопротивление R11 = 1 ом, представим параметр deltaU и другие в следующем виде:
Delta U = luR11/(2l11u11) ( 3 )
z = s S/l = nel11/l 2
Здесь s ~ ne/Sl - удельная электрическая проводимость идеализированного провода, u11 - стандарт скорости.
При фиксированном значении тока в проводе разность потенциалов, приложенная к нему, пропорциональна электрическому сопротивлению (ЭС) провода. Поэтому будем выражать параметр deltaU в единицах ЭС. Считая, что R11 = bu11, где b - безразмерный коэффициент, переходим к системе DS1, в которой электрический заряд имеет размерность времени, потенциал - размерность скорости.
Мощность электрического тока, текущего через идеализированный провод, равна
P = (deltaU ) 2z = b 2neu 2/(4l11) = deltaU I ( 4 )
Итак можно видеть, что несмотря на нелинейную зависимость ЭС от длины идеализированного провода, мощность, рассеиваемая в проводе от его длины не зависит при фиксированном значении силы тока, текущего через провод.
1.4. Идеализированный провод, в котором отсутствует активное ЭС, не отличается по своим свойствам от вакуумного диода. Речь идет о процессах коллективного ускорения электронов в пределах длины их свободного пробега. Используя закон “трех вторых”, запишем для такого случая (СИ):
I = j S = 40SU 3/2(2e/me)1/2/(9l 2) ( 5 )
Здесь ε0 – электрическая постоянная, |е| = 1.60217653(14)·10 - 19. Отметим, что параметр l 2 в (5) характеризует величину вакуумной электрической проводимости, что соответствует z = f (l)).
В любом источнике тока можно выделить устройство, имеющее подобие вакуумного диода, которое определяет величину внутреннего вакуумного сопротивления этого источника. Поэтому обнаружение нелинейных явлений не является простым делом.
Реально при протекании постоянного тока по проводу имеет место не только ускорение электронов под действием поля, а также и отбор тех электронов, которые имеют скорость, направленную к положительному концу провода. Рассеяние энергии этих электронов с выделением тепла имеет место на заключительном этапе, когда происходит столкновение отобранных электронов с фононами и другими препятствиями, существующими внутри провода.
Рекомендуем скачать другие рефераты по теме: банк бесплатных рефератов, чс реферат.
Категории:
1 2 | Следующая страница реферата