Оптика Гамильтона — Якоби
| Категория реферата: Рефераты по науке и технике
| Теги реферата: шпоры по химии, рефераты по биологии
| Добавил(а) на сайт: Ignatenko.
1 2 | Следующая страница реферата
Оптика Гамильтона — Якоби
Марио Льоцци
Когда в 1830 г. ирландец Уильям Роуан Гамильтон (1805—1865) начал заниматься оптикой, волновая теория света еще не была общепринятой. Пуассон был еще последователем корпускулярной теории. Био, самый консервативный из великих физиков XIX века, остался верен ей до самой смерти, последовавшей в 1862 г. Брюстер волновой теории не принимал, поскольку считал невозможным приписывать творцу "столь грубую идею, как заполнение всего пространства эфиром для того, чтобы создать свет". Трудно поверить, но и Араго, согласно свидетельству Верде, заявил в 1851 г., что не может более следовать идеям Френеля с тех пор, как тот стал говорить о поперечных колебаниях эфира.
В этих условиях Гамильтон задался целью создать формальную теорию известных оптических явлений, которая была бы приемлема как с точки зрения волновой интерпретации, так и с точки зрения корпускулярной, и была бы построена по образцу принципа наименьшего действия. Гамильтон заявил, что ставит перед собой цель — создать формальную теорию оптических явлений, которая обладала бы такой же "красотой, эффективностью и гармонией", как аналитическая механика Лагранжа. Согласно Гамильтону, мы можем рассматривать законы распространения световых лучей сами по себе, независимо от объясняющих их теорий и прийти таким образом к "математической оптике". Более того, идя по этому пути, Гамильтон вывел отсюда целую научно-философскую доктрину. В эволюции каждой науки Гамильтон различает две стадии: в первой ученый восходит от отдельных фактов к законам, пользуясь индукцией и анализом, во второй он от законов нисходит к следствиям, пользуясь дедукцией и синтезом. Иными словами, человек собирает и группирует отдельные явления до тех пор, пока научное воображение не даст ему возможность вскрыть внутренние законы, позволяющие возвыситься до понимания единства всего разнообразия. После этого из единства человек вновь получает разнообразие, проникая с помощью открытых законов в будущее.
В этом состоит метод Гамильтона. Он замечает, что принцип наименьшего действия, хотя и выведен из метафизических соображений о наличии экономии в природе, следует рассматривать (по крайней мере в известных случаях) как принцип экстремального действия, и поэтому он говорит о стационарном или варьируемом действии. Таким образом, Гамильтон пришел к формулировке носящего его имя принципа, согласно которому некоторая физическая величина, точно определенная математически, стационарна при распространении света. Этим путем ему удается рационализировать геометрическую оптику, превратив ее в формальную теорию, позволяющую интерпретировать опытные данные без необходимости выбора между корпускулярной и волновой гипотезами.
В 1834—1835 гг. Гамильтон обобщил свою теорию оптических явлений на динамику и систематически развил ее, сведя решение общей задачи динамики к системе двух уравнений в частных производных.
В этих работах Гамильтона достигнут чудесный синтез проблем оптики и механики, который был впоследствии вновь найден Луи де Бройлем и который непосредственно вдохновил Шредингера в его исследованиях. Интересно заметить, что наиболее мощные математические средства квантовой механики были заимствованы именно из аналитической механики, сложившейся в рамках классической физики.
Созданная теория позволила Гамильтону предсказать, что если на плоскопараллельную пластину, вырезанную в двуосном кристалле перпендикулярно оптической оси, направить пучок естественного света так, чтобы он преломился в кристалле параллельно оптической оси, то на выходе из пластины образуется светящееся кольцо, диаметр которого меняется с изменением толщины пластины. Как известно,— это явление внутренней конической рефракции, которое было подтверждено экспериментально Хемфри Ллойдом (1800—1881) в опытах с арагонитом.
Однако наиболее общее применение теории Гамильтона было дано Карлом Густавом Якоби (1801—1854) в его знаменитых работах, начатых в 1842 г. Одновременно Якоби упростил и обобщил теорию Гамильтона, придав ей современную форму, ставшую классической. Вот почему эту теорию часто называют теорией Гамильтона — Якоби.
Скорость света
Как мы уже упоминали не раз, корпускулярная теория приписывает свету большую скорость в более плотных средах, тогда как волновая теория приписывает ему в этом случае меньшую скорость. Араго, противник корпускулярной теории и не совсем последовательный приверженец волновой, полагал, что измерение скорости света в материальных средах было бы лучшим способом, experimentum crucis, установить, которая же из этих теорий справедлива. И вот в 1838 г. он предлагает соответствующий опыт, выполнение которого, однако, из-за слабости зрения он был вынужден предоставить другим. Таким образом, Араго особенно подчеркнул решающую роль этого опыта для окончательного подтверждения волновой теории, так что задача измерения скорости света наземных источников приобрела особую необходимость и важность в глазах молодых физиков.
Первым удалось справиться с ней в 1849 г. Арману Ипполиту Физо (1819—1896). В принципиальном отношении опыт Физо был подобен опыту Галилея. Физо смонтировал установку, в которой луч света проходил в щели между соседними зубцами колеса, вращающегося с большой скоростью, и попадал по нормали на плоское зеркало, находящееся на расстоянии 8633 м. Отраженный луч шел обратно по направлению падающего луча. Если зубчатка была неподвижна, то отраженный луч проходил обратно через ту же щель, через которую он прошел в прямом направлении, и наблюдателю зеркало представлялось освещенным. Если же зубчатка достаточно быстро вращалась, то за время, необходимое свету для прохождения от зубчатки до зеркала и обратно, на место щели перемещался зубец, преграждавший путь отраженному лучу, так что поле зрения казалось наблюдателю темным. Если скорость вращения зубчатки еще больше возрастала, так что отраженный луч попадал уже в следующую щель, то поле зрения вновь становилось светлым. Физо получил для скорости света значение 313 274 304 м/сек.
Эти опыты были повторены Альфредом Корню (1841—1902), который в качестве среднего из 1000 опытов дал в 1873 г. значение 298 400 км1сек с возможной ошибкой в 1/300. В усовершенствованном виде этот метод был применен в 1882 г. Джемсом Юнгом (1811—1883) и Джорджем Форбсом, а в 1928 г. А. Каролюсом и О. Миттелыптедтом, заменившими вращающуюся зубчатку ячейкой Керра, значительно более точным электрооптическим прибором, позволившим уменьшить расстояние до зеркала до нескольких метров. В таком виде опыты были снова повторены А. Хуттелем в 1940 г. и У. Андерсоном в 1941 г.
Однако прибор Физо не позволял измерять скорость света в различных средах. В 1834 г. для измерения длительности электрической искры Уитстон ввел вращающееся зеркало и сразу же стал думать о возможности его применения для измерения скорости света. Однако здесь ему не удалось добиться успеха. Его проект был подхвачен Араго, предложившим очень сложный опыт, о котором мы упоминали в начале параграфа. Физо и Леон Фуко (1810—1868) взялись упростить его и практически осуществить. Сначала они работали вместе, но потом разделились, вступив в соревнование, кто быстрее достигнет цели. Это удалось сделать в 1850 г. Фуко, применившему приспособление, описываемое во всех учебниках физики.
Суть опыта заключается в следующем. Время, необходимое для прямого и обратного прохождения светом расстояния между двумя зеркалами, одно из которых быстро вращается, определялось по углу поворота зеркала за это время, который оценивался по отклонению светового луча после его отражения от вращающегося зеркала. Для определения числа оборотов вращающегося зеркала в секунду Фуко применил (по-видимому, впервые в физических исследованиях) стробоскопический метод, т. е. метод кажущегося замедления периодического движения, позволяющий удобно проводить наблюдение. Помещая между обоими зеркалами, находящимися одно от другого на расстоянии нескольких метров, различные вещества, отличные от воздуха, можно было определить скорость света в них.
Опыты, проведенные Фуко в 1850 г., позволяли лишь сравнивать значения скоростей света. Поместив трубу с водой между двумя зеркалами, он показал, что скорость света в воде составляет 3/4 скорости света в воздухе. К тому же результату пришел несколько позже Физо, поставивший опыт совместно с Луи Бреге (1804—1883). В 1862 г. Фуко, отвлекшись от других исследований, вновь предпринял измерение скорости света и нашел ее равной 298 000 км/сек с максимальной ошибкой ±500 км/сек.
Измерения скорости света повторялись с последующими улучшениями методики Фуко Симоном Ньюкомбом (1835—1909) в 1881—1882 гг., Альбертом Майкельсоном в период 1878—1882 гг. и еще раз в 1924—1926 гг. и У. Андерсоном в 1937 г. Измерения Андерсона дают для скорости света значение 299 764 км/час с возможной ошибкой 15 км/сек. Все приведенные значения относятся к распространению света в пустоте.
Наземные измерения систематически дают для скорости света значение больше полученного с помощью астрономических методов; причина этого неизвестна.
Все эти измерения согласуются также в том, что в более преломляющих средах скорость света оказывается меньшей. Но эти измерения вскрыли еще одну важную особенность: показатель преломления среды не равен точно отношению скоростей света в пустоте и в рассматриваемой среде, как того требует теория Френеля, причем наблюдаемое отклонение намного превышает величину ошибки эксперимента. Это расхождение в 1881 г. объяснил Рэлей, который ввел понятия "фазовой скорости", т. е. (не наблюдаемой указанными методами) скорости строго монохроматической волны, и "групповой скорости"— скорости гребня волны, получающегося в результате наложения большого числа монохроматических волн. В диспергирующей среде групповая скорость, которая как раз и измеряется в описанных опытах, не совпадает с фазовой.
В 1850 г. опыты Физо и Фуко представлялись решающим триумфом волновой теории. Карло Маттеуччи, один из крупнейших итальянских физиков того времени, в том же году писал: "Прямое экспериментальное доказательство уменьшения скорости света в более плотных средах, о котором мы только что говорили, полностью отвергает ньютоновскую гипотезу и великолепно подтверждает справедливость волновой".
Однако физические теории никогда не бывают окончательными. Теория Френеля спокойно просуществовала еще около двадцати лет, после чего начались всякие неприятности.
Неподвижен ли эфир илиже он увлекается при движении тел?
Гипотеза упругих колебаний эфира сразу ставила проблему: неподвижен эфир или же движется? В частности, движется ли эфир, сконцентрированный в теле, вместе с этим телом? Прекрасные опыты Араго доказали, что движение Земли не оказывает никакого ощутимого воздействия на преломление света, приходящего от звезд.
Этот результат был несовместим с корпускулярной теорией, поэтому Араго обратился к Френелю с вопросом, укладывается ли он в рамки волновой теории. В одном из своих писем 1817 г. Френель ответил, что этот результат легко объясняется волновой теорией, как и явление аберрации, если только принять частичное увлечение эфира, т. е. принять, что движущееся тело увлекает с собой не весь содержащийся в нем эфир, а лишь избыточную часть эфира по сравнению с равным объемом пустого пространства. С помощью этой гипотезы Френелю удалось объяснить все явления, проистекающие из-за быстрого движения преломляющего тела.
Влияние движения тел, испускающих свет или звук, было исследовано теоретически в 1842 г. австрийским физиком Христианом Допплером (1803—1853), который показал, что при приближении источника света к наблюдателю период колебаний представляется наблюдателю меньшим, чем при неподвижном источнике, т. е. цвет излучения смещается в сторону ультрафиолета. Если же источник удаляется от наблюдателя, то цвет смещается в красную сторону спектра. Аналогично если источник звука приближается к наблюдателю, то звук воспринимается более высоким, а если удаляется — более низким; в этом явлении теперь легко убедиться, наблюдая изменение высоты звука гудка паровоза, проходящего мимо наблюдателя. В 1848 г. Физо предложил воспользоваться этим явлением, получившим название эффекта Допплера, или эффекта Допплера — Физо, для измерения радиальной составляющей скорости звезд по смещению их спектральных линий.
Уже сам Допплер заметил, что этот же метод можно применить для измерения скоростей двойных звезд; однако это измерение никому не удавалось провести, в том числе и Максвеллу. Применение допплеровского метода в астрофизике стало возможным лишь после появления в 1860 г. призмы прямого зрения, которую предложил астроном Джован Баттиста Амичи (1786—1863), известный конструктор оптических инструментов большой точности. Помимо этой призмы, как известно из учебников физики, он ввел в употребление еще другую призму (полного внутреннего отражения), названную в его честь, усовершенствовал микроскоп и предложил идею иммерсионного микроскопа. Призма прямого зрения Амичи состоит из призмы из флинтгласа, расположенной между двумя призмами из кронгласа; она дает спектр в направлении падающего луча.
В 1869 г. Фридриху Цолльнеру (1834—1882) пришла в голову счастливая идея применить пару противоположно расположенных призм прямого зрения Амичи, чтобы получить два противоположных спектра. Таким образом был создан так называемый реверсионный спектроскоп, который позволял уже использовать эффект Допплера. С этого момента значение эффекта Допплера в астрофизике чрезвычайно возросло.
Рекомендуем скачать другие рефераты по теме: собрание сочинений, скачать бесплатно конспекты.
Категории:
1 2 | Следующая страница реферата