Понятие времени и проблема континуума (к истории вопроса)
| Категория реферата: Рефераты по науке и технике
| Теги реферата: решебник класс, доклад по обж
| Добавил(а) на сайт: Кахманова.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Аристотель, как известно, не принимает понятия актуальной бесконечности, и его позиция совпадает с принципами античной математики. Он пользуется только понятием потенциально бесконечного, т.е. бесконечного делимого, которое, «будучи проходимым по природе, не имеет конца прохождения, или предела» [6, Ш, 6, 206b].
Сказать, что бесконечное существует только как потенциальное, а не как актуальное – значит сказать, что оно становится, возникает, а не есть нечто законченное, завершенное, не есть бытие. Пример потенциально бесконечного – это беспредельно возрастающий числовой ряд, ряд натуральных чисел, который, сколько бы мы его ни увеличивали, остается конечной величиной. Потенциально бесконечное всегда имеет дело с конечностью и есть беспредельное движение по конечному. Принцип непрерывности, как его задал Аристотель, базируется на понятии потенциально бесконечного.
Бесконечное, таким образом, есть, по Аристотелю, возможное, а не действительное, материя, а не форма: не случайно же материю Аристотель понимает как возможность. Не допуская актуальной бесконечности, Аристотель определяет бесконечное как то, вне чего еще всегда что-то есть. А может ли существовать нечто такое, вне чего больше ничего нет? И если да, то как его назвать? «Там, где вне ничего нет, – говорит Аристотель, – это законченное и целое: это то, у которого ничто не отсутствует, например, целое представляет собой человек или ящик... Целое и законченное или совершенно одно и тоже, или сродственны по природе: законченным не может быть ничто, не имеющее конца, конец же граница» [6, III, 6, 207b]. Бесконечное – это материя, т.е. в ее аристотелевском понимании нечто вполне неопределенное, не имеющее в себе своей связи и лишенное всякой структуры. Целое же – это материя оформленная, и «конец», «граница», структурирующая его и делающая чем-то актуально сущим, действительным – это форма. Именно потому, что началом актуально сущего является форма, а форма есть предел, начало цели (она же – «конец», граница), он отвергает возможность актуально бесконечного: такое понятие является, по Аристотелю, как, впрочем, и по Платону, самопротиворечивым.
Пересмотр аристотелевского принципа непрерывности и понятие бесконечно малого у Галилея и Кавальери
Несмотря на напряженные споры вокруг понятий бесконечного и непрерывного, средневековая физика и математика признавала как теорию отношений Евдокса, так и аристотелево понятие непрерывного. Философско-теоретическому пересмотру эти античные принципы были подвергнуты в эпоху Возрождения – Николаем Кузанским и Джордано Бруно. В рамках же собственно физики и математики они были поставлены под сомнение и в сущности отвергнуты Галилеем и его учеником Кавальери, стоявшими у истоков инфинитезимального исчисления5.
Проблема непрерывности обсуждается Галилеем в разных контекстах. Так, например, рассматривая вопрос о причинах сопротивления тел разрыву или деформации и считая причиной мельчайшие «пустоты» или «поры» в телах, Галилей сталкивается с таким аргументом: как объяснить большую силу сопротивления некоторых материалов, если при ничтожном размере «пустот» и сопротивление их должно быть ничтожным? Отвечая на этот вопрос, Галилей пишет: «Хотя эти пустоты имеют ничтожную величину и, следовательно, сопротивление каждой из них легко превозмогаемо, но неисчислимость их количества неисчислимо увеличивает сопротивляемость» [12, c. 131]. Понятие ничтожно-малых пустот характерно: ничтожно-малое, в сущности, не есть конечная величина, ибо в этом случае число пустот в любом теле было бы исчислимым. Что Галилей хорошо понимает заключающуюся здесь проблему и трудность, свидетельствует следующая беседа Сагредо и Сальвиати: «Если сопротивление не бесконечно велико, – говорит Сагредо, – то оно может быть преодолено множеством весьма малых сил, так что большое количество муравьев могло бы вытащить на землю судно, нагруженное зерном... Конечно, для того чтобы это было возможно, необходимо, чтобы и число их было велико: мне кажется, что так именно обстоит дело и с пустотами, держащими связанными частицы металла.
Сальвиати. Но если бы понадобилось, чтобы число их было бесконечным, то сочли бы вы это невозможным?
Сагредо. Нет, не счел бы, если бы масса металла была бесконечной, в противном случае...» [12, c. 131–132].
Мысль Сагредо ясна: в противном случае мы окажемся перед парадоксом Зенона: как бы малы ни были составляющие элементы, но если они имеют конечную величину, то бесконечное их число в сумме даст величину бесконечную – неважно, идет ли речь о массе металла, длине линии или величине скорости. На этом принципе стояла как античная математика, так и античная физика. Но именно этот принцип и хочет оспорить Галилей. Вот ответ Сальвиати на соображения Сагредо: «В противном случае – что же? Раз мы уже дошли до парадоксов, то попробуем, нельзя ли каким-либо образом доказать, что в некоторой конечной непрерывной величине может существовать бесконечное множество пустот» [12, c. 132]. Доказательство Галилея состоит в допущении тождества круга и многоугольника с бесконечным числом сторон, т.е. образований, с точки зрения античной математики, не могущих иметь между собой никакого отношения. Именно предельный переход от многоугольника к кругу путем допущения многоугольника с актуально бесконечным числом сторон составляет основание вводимого Галилеем метода инфинитеэимального исчисления. Использование актуально бесконечного в математике, по мнению Галилея, расширяет возможности последней. Именно Галилей пользуется понятием неделимого, на основе которого строит затем геометрию неделимых его ученик Кавальери6. Эти неделимые Галилей именует «неконечными частями линии», «неделимыми пустотами», «атомами». Природа их парадоксальна, противоречива: они не являются ни конечными величинами, ни «нулями». Из них-то, по Галилею, и состоит непрерывная величина.
Характерно, что в XVIII в., когда бурно обсуждалась природа этой самой «бесконечно малой», Вольтер со свойственным ему остроумием определил математический анализ как «искусство считать и точно измерять то, существование чего непостижимо для разума» (цит. по: [13, c. 176]).
Галилей, вводя понятие «бесконечного числа бесконечно малых», принимает таким образом в качестве предпосылки актуальную бесконечность, которой избегала античная математика, как и античная физика.
Вслед за Галилеем Кавальери, принимая те же предпосылки, предложил метод составления непрерывного из неделимых. При этом характерно название работы Кавальери: «Геометрия, изложенная новым способом при помощи неделимых непрерывного» (первое ее издание вышло в 1635 г.). Название полемично по отношению к принципу отношений Евдокса–Архимеда, как и к принципу непрерывности Аристотеля, который в ХШ в. кратко сформулировал Фома Аквинский: «Ничто непрерывное не может состоять из неделимых» (цит. по: [14, S. 191]). Каким образом непрерывное составлено из неделимых, Кавальери поясняет, в частности, в предложении ХХХV второй книги «Геометрии»: «Построенный на каком-либо прямоугольнике параллелепипед, высотой которого служит некоторая прямая линия, равен (сумме) параллелепипедов, имеющих основаниями тот же прямоугольник, а высотами какие угодно части, на которые может быть разделена высота. Если же представим себе, что прямоугольник, служащий основанием, разделен каким угодно образом на какое угодно число прямоугольников, то, указанный параллелепипед будет равен (сумме) параллелепипедов, имеющих высотами отдельные части высоты, а основанием – отдельные части основания» [15, c. 277]. Плоская фигура мыслится, таким образом, как совокупность всех линий, а тело – как сумма всех его плоскостей.
Интересно разъяснение, которое дает Кавальери новому методу, прямо указывая на то, что ему не ясна природа «неделимого», с помощью которого он «составляет» геометрические объекты, а потому не ясна и сущность самого «составления»: «Я пользовался тем же приемом, каким пользуются алгебраисты для решения предлагаемых им задач: хотя бы корни чисел были неопределимы, непостижимы и неизвестны, они их тем не менее складывают вместе, вычитают, умножают и делят и, если только они окажутся в состоянии получить в результате этих манипуляций нужное им решение предложенной задачи, они считают, что достигли цели. Как раз так же я оперирую с совокупностью линий или плоскостей: пусть они, поскольку речь идет об их числе, неопределимы и неизвестны; поскольку речь идет об их величине, они ограничены всякому видными пределами» [15, с. 89]. Кавальери сознает, что понятие актуальной бесконечности, с которым оперирует геометрия неделимых, порождает «сомнения, связанные с опасностью плавания у скал этой бесконечности» [15, с. 91]. Это сознание, как и та критика, которой подверглось понятие континуума как «совокупности неделимых» со стороны современников Кавальери7, заставили его в седьмой книге «Геометрии» уточнить метод, примененный им в первых шести книгах. Если первоначально Кавальери сравнивал между собой совокупность всех линий одной плоской фигуры с совокупностью всех линий другой (аналогично – и плоскостей, из которых составлены тела), то в седьмой книге он сравнивал любую линию одной фигуры с соответствующей линией другой, или одну плоскость одной фигуры тела с плоскостью другого. Таким путем он избегал необходимости оперировать понятиями «все линии» и «все плоскости». Поясняя свое ограничение, Кавальери писал: «Мы намеревались доказать лишь то, что отношение между континуумами соответствует отношению между неделимыми и наоборот» [17, p. 2].
Самое удивительное однако состоит в том, что одним из критиков Кавальери оказался также и... Галилей, сам, как мы знаем, предлагавший составлять непрерывное из бесконечно большого числа неделимых! Из переписки Кавальери известно, что Галилей не хотел признать правомерности понятий «все плоскости данного тела» и «все линии данной плоскости». Это кажется неожиданным, если мы вспомним, что Галилей допускал «строение континуума из абсолютно неделимых атомов» [12, с. 154], хотя и не мог разъяснить природу этих неделимых8. Как мы уже выше могли видеть, Галилей рассуждал о неделимых не только с точки зрения математической, но и как физик. Размышляя о природе континуума в работе «Разные мысли», Галилей утверждает: «Бесконечность должна быть вовсе исключена из математических рассуждений, так как при переходе к бесконечности количественное изменение переходит в качественное, подобно тому, как, если мы будем самой тонкой пилой размельчать тело, то как бы мелки ни были опилки, каждая частица имеет известную величину, но при бесконечном размельчении получится уже не порошок, а жидкость, нечто качественно новое, причем отдельные частицы вовсе исчезнут» (цит. по: [18, с. 37]).
В чем тут дело? Почему Галилей то допускает понятие актуальной бесконечности, то запрещает его? Почему он критикует Кавальери за метод, каким пользовался сам? Вот что думает по этому поводу С.Я. Лурье, переводчик «Геометрии» Кавальери и автор предисловия к переводу: «Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым» [18, с. 39]. Вероятно, С.Я. Лурье здесь недалек от истины, хотя его утверждение о том, что Галилей в своем учении о неделимых следует Демокриту, вряд ли можно принять без оговорок. Галилей пытается найти объединение физического атомизма Демокрита с математическим атомизмом, которого у Демокрита не было, а потому опирается скорее на Архимеда9. Но позиция его в этом вопросе с психологической точки зрения очень показательна; то, что он позволяет себе, хотя и не без некоторых оговорок, крайне раздражает его у другого: тут с особой ясностью ему видны логические противоречия, связанные с понятием актуальной бесконечности, в частности – с бесконечно малым. Как бы то ни было, очевидно одно: Галилею не удалось удовлетворительно разрешить проблему континуума на пути, отличном от евклидовско-аристотелевского, и он, критикуя Кавальери, вынужден признать, что вместе с неделимым в математику входят неразрешимые парадоксы.
Попытки преодолеть парадоксы бесконечного: Декарт, Ньютон, Лейбниц
Не удивительно, что Декарт, признавая принцип непрерывности не только в математике, но и в физике, возвращается в этом пункте к Аристотелю. «Невозможно, – пишет Декарт, – существование каких-либо атомов, т.е. частей материи, неделимых по своей природе, как это вообразили некоторые философы» [19, с. 475]. Соответственно Декарт не допускает в научный обиход и понятие актуально бесконечного. Актуально бесконечен, по Декарту, лишь Бог, но именно потому он и непознаваем. Ведь познание, говорит Декарт, следуя здесь античной традиции, есть полагание предела, границы. «Мы никогда не станем вступать в споры о бесконечном, тем более что нелепо было бы нам, существам конечным, пытаться определить что-либо относительно бесконечного и полагать ему границы, стараясь постичь его. Вот почему мы не сочтем нужным отвечать тому, кто спрашивает, бесконечна ли половина бесконечной линии, или бесконечное число четное или нечетное и т.д. О подобных затруднениях, по-видимому, не следует размышлять никому, кроме тех, кто считает свой ум бесконечным. Мы же относительно того, чему в известном смысле не видим пределов, границ, не станем утверждать, что эти границы бесконечны, но будем лишь считать их неопределенными. Так, не будучи в состоянии вообразить столь обширного протяжения, чтобы в то же самое время не мыслить возможности еще большего, мы скажем, что размеры возможных вещей неопределенны. А так как никакое тело нельзя разделить на столь малые части, чтобы каждая из них не могла быть разделена на еще мельчайшие, то мы станем полагать, что количество делимо на части, число которых неопределенно» [19, с. 437–438].
Из этого отрывка видно, что в качестве понятия, доступного человеческому разуму, Декарт признает только потенциальную бесконечность. Как и Аристотель, он мыслит континуум как беспредельно делимое.
Правда, в отличие от Аристотеля, Декарт не считает вселенную конечной. Но характерно, что он называет ее не бесконечной (infinite), а только неопределенной (indefinite), т.е. бесконечной потенциально, не имеющей предела. Атомизм же Декарт не признает ни в математике, ни в физике: картезианские корпускулы отличаются от демокритовских атомов тем, что они бесконечно делимы. В этом смысле картезианская программа является континуалистской, как и перипатетическая. Отвергая аристотелианскую физику и космологию по целому ряду параметров, Декарт однако полностью разделяет аристотелевский принцип непрерывности.
Таким образом, пересмотр понятий античной науки и философии в ХVII в. отнюдь не был универсальным: важнейшее положение античной математики и физики, вначале поколебленное учением о неделимых Галилея, Кавальери, Торичелли было восстановлено в правах Декартом. Да и Галилей, как мы видели, в вопросе о непрерывности так и не пришел к определенному решению: критикуя Кавальери, он в сущности отказывался от своего революционного переворота.
Споры вокруг принципа непрерывности и природы бесконечно малого не утихали на протяжении ХVII и ХVIII вв., что, впрочем, не мешало дальнейшей разработке и использованию математического анализа. Характерна попытка Ньютона найти выход из затруднений, связанных с понятием актуально бесконечно малого. Первоначально английский ученый употреблял бесконечно малые величины и пользовался ими, как и его предшественники (в частности, Дж. Валлис10), т.е. отбрасывал их на том же основании, что и другие математики: поскольку значение их исчезающе мало по сравнению с конечными величинами. Однако затем Ньютон создает так называемую теорию флюксий. «Главное отличие теории флюксий в ее законченном виде от современного ей дифференциального исчисления, – пишет А.П. Юшкевич, – заключается в стремлении изгнать из математики бесконечное при помощи метода первых и последних отношений, т.е. пределов» [21, с. 26]. Метод флюксий, содержащий в самой первоначальной формулировке принцип пределов, был со стороны Ньютона попыткой избежать актуально бесконечного и обосновать практически уже вошедшее в обиход математиков отбрасывание бесконечно малых слагаемых. Метод флюксий следующим образом вводится в «Математических началах натуральной философии»: «Количества, а также отношения количеств, которые в продолжение любого конечного времени постоянно стремятся к равенству и ранее конца этого времени приблизятся друг к другу ближе, нежели на любую заданную разность, будут напоследок равны» [22, VII, с. 57]11.
Это – первая лемма I книги «Начал». Анализируя математические работы Ньютона, в частности его «Анализ с помощью уравнений с бесконечным числом членов», Д.Д. Мордухай-Болтовской замечает, что Ньютон стоял как бы на перепутье – между созданным им методом флюксий и возникшим позднее у Даламбера понятием предела; однако создать теорию предела Ньютону не удалось [24, с. 289], хотя само понятие «предела» и появляется у Ньютона в «Началах».
Мы не можем сколько-нибудь подробно останавливаться на методе флюксий Ньютона: для нашей цели достаточно показать, что Ньютон искал способа избежать понятия бесконечно малой величины, т.е. актуально бесконечного, и его метод первых и последних отношений есть попытка приблизиться к методу исчерпывания древних, вполне строгому и строящемуся на признании лишь потенциальной бесконечности12.
Аналогичные затруднения с понятием бесконечно малого испытывал Лейбниц, чье отношение к принципу непрерывности весьма показательно для научно-философской мысли XVII–XVIII вв. На теории бесконечно малых Лейбница мы остановимся подробнее, поскольку немецкий ученый не только разработал метод дифференциального исчисления, но и многократно обсуждал те трудности, которые связаны с его обоснованием. Позиция Лейбница в вопросе о бесконечно малых столь же непоследовательна, как и позиция его предшественника Галилея: как и Галилей, Лейбниц, с одной стороны, оперирует этим понятием и сам разрабатывает метод математического анализа, а, с другой, он вполне разделяет критическое отношение других математиков и особенно философов к этому понятию-парадоксу. Такая двойственная позиция у Лейбница в сущности сохраняется на протяжении всей его жизни. В этом отношении показательно письмо Лейбница к Фуше от января 1692 г. Фуше в письме к Лейбницу доказывал невозможность оперирования с неделимыми в математике и настаивал на необходимости признать принцип непрерывности в его аристотелевской формулировке. Отвечая Фуше, Лейбниц пишет: «Вы правы, говоря, что коль скоро все величины могут делиться до бесконечности, не существует такой величины, сколь угодно малой, которая в свою очередь не могла бы быть разделена на еще меньшие части, число которых бесконечно» [26, 3, с. 287]. Однако, признав бесконечную делимость любой величины, Лейбниц тут же добавляет: «Впрочем, я не нахожу ничего дурного и в предположении, что эта делимость может быть в конце концов исчерпана, хотя и не вижу в этом никакой нужды» [26, 3, с. 287]. Это замечание стоит в прямом противоречии с признанным только что принципом непрерывности: в самом деле, если делимость может быть исчерпана, значит, могут быть получены последние неделимые элементы, – а это означает, что величины не будут делимы до бесконечности. И тут делу не может помочь оговорка Лейбница: «Хотя и не вижу в этом никакой нужды».
Точно так же «вибрирует» мысль Лейбница в вопросе о бесконечном в его «Новых опытах о человеческом разумении», написанных в 1703–1704 гг. С одной стороны, Лейбниц признает, что математике нельзя оперировать с понятием актуальной бесконечности. «Не существует бесконечного числа, или бесконечной линии, или какого-нибудь другого бесконечного количества, если брать их как настоящие целые... Истинная бесконечность... заключается лишь в абсолютном, которое предшествует всякому соединению и не образовано путем прибавления частей» [26, 2, с. 157]. В данном случае речь идет о невозможности актуально существующей бесконечно большой величины. Однако и по отношению к актуально существующей бесконечно малой величине Лейбниц здесь высказывается тоже однозначно: «Мы заблуждаемся, пытаясь вообразить себе абсолютное пространство, которое было бы бесконечным целым, составленным из частей. Ничего подобного не существует. Такое понятие внутренне противоречиво, и все эти бесконечные целые, равно как и их антиподы, бесконечно малые, применимы лишь для математических выкладок, подобно мнимым корням в алгебре» [26, 2, с. 158]. Однако, с другой стороны, Лейбниц в той же работе признает актуально бесконечное множество восприятии, имеющихся в нас в каждый момент, но не сознаваемых нами, а также актуально бесконечное множество субстанций-монад, или, как он их называет, «метафизических точек». Таким образом, причина «вибрации» Лейбница – в невозможности признать актуальную бесконечность в математике и в то же время в невозможности отвергнуть актуальную бесконечность в физике и метафизике; последние имеют дело с реально сущим, с бытием, тогда как математика – лишь с возможным, конструкцией воображения»13.
Рекомендуем скачать другие рефераты по теме: конспект, классификация реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата