Предварительный усилитель
| Категория реферата: Рефераты по науке и технике
| Теги реферата: реферат на тему система, 5 баллов рефераты
| Добавил(а) на сайт: Gur'jan.
1 2 3 | Следующая страница реферата
Введение
Микроэлектроника - это область электроники, занимающаяся созданием электронных узлов, блоков и устройств в миниатюрном интегральном исполнении.
Ход развития электроники был предопределен резким увеличением функций, выполняемых РЭА и повышением требований к ее надежности.
Прогресс технологии и схемотехники, позволивший создать новую элементную базу, был в 60-70 годах столь быстрым, что он проявился не только во многих устоявшихся терминах радиоэлектроники, но значительно пополнил ее словарный запас.
В 1971 г. был разработан Государственный стандарт по терминологическим вопросам (ГОСТ 17021-71). Он включил 16 терминов, причем наряду с общими понятиями были даны однозначные определения и для частей микросхем.
В 1979 г. был утвержден стандарт СТ СЭВ 1023-79 по терминам и определениям в области микроэлектроники, и в соответствии с этим были введены изменения в ГОСТ 17021-75, а в 1987 г. был выпущен ГОСТ 27394-87, в 1988 г. - ГОСТ 17021-88.
Интегральная микросхема - микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала и (или) накапливания информации и имеющее высокую плотность упаковки электрически соединенных элементов и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.
Элемент интегральной микросхемы - это часть интегральной микросхемы, реализующая функцию какого-либо радиоэлемента (например, транзистора, диода, резистора, конденсатора), которая выполнена нераздельно от кристалла или подложки.
Большая роль отводится радиоэлектронике в обеспечении высоких скоростей управления при высокой точности. В космонавтике, ядерной физике, вычислительной технике, кибернетики, электроэнергетике, на транспорте и во многих других отраслях широко применяют средства радиоэлектроники для управления и контроля самых различных процессов.
Основными задачами, которые должна решать радиоэлектроника, являются разработка и совершенствование ее элементной базы, особенно в области микроэлектроники (микросхемы, микропроцессоры и др.), внедрение последних достижений электроники в народное хозяйство, совершенствование технологии производства электронных изделий и систем, повышение качества и надежности этих изделий и т.д.
1.1. Классификация усилителей
1.1.1. Электронными усилителями называют устройства, предназначенные для повышения мощности входных электрических сигналов. При этом процесс усиления сигналов осуществляется с помощью усилительных элементов - транзисторов, обладающих управляющими свойствами.
Маломощный входной сигнал управляет расходом энергии источника питания значительно большего уровня мощности.
1.1.2. По назначению различают усилители напряжения, тока и мощности.
В выходной цепи усилителя напряжения действует сигнал, амплитуда напряжения которого равна Uвх*Kус.и.
В выходной цепи усилителя тока действует сигнал, амплитуда напряжения которого равна Iвх*Kус.и.
Усилители мощности обеспечивают заданное усиление в выходной цепи как по току, так и по напряжению.
1.1.3. В зависимости от характера изменения во времени входного сигнала различают усилители постоянного и переменного тока. Для усилителей постоянного тока характерно наличие усиления уже при нижней частоте f=0.
1.1.4. Если усиления одного усилительного элемента недостаточно, то в качестве нагрузки каскада используют входную цепь второго усилительного элемента и т.д.
Усилитель, содержащий несколько ступеней усиления, называют многокаскадным.
1.1.5. Рассмотренные принципы построения усилительных каскадов используют при проектировании интегральных микросхем аналогичного назначения. Технологически такие усилители выполняют в виде монолитной схемы, содержащей все необходимые элементы в интегральном исполнении. Выполняемая ими функция описывается уравнением Uвых=Kи*Uвх
1.2. Принципиальная схема операционного усилителя (ОУ)
1.2.1. Операционные усилители (ОУ) в интегральном исполнении в настоящее время составляют основу аналоговых интегральных микросхем.
Приведена схема первого поколения. Интегральные ОУ второго и третьего поколения более развитые и усовершенствованные.
1.2.2. Операционные усилители предназначены для выполнения математических операций при использовании его в схеме с обратной связью. Однако, область применения ОУ, выполненного в виде микросхемы, значительно шире. Поэтому в настоящее под ОУ принято понимать микросхему - усилитель постоянного тока, позволяющий строить узлы аппаратуры, функции и технические характеристики которых зависят только от свойств цепи обратной связи, в которую он включен.
1.3. Основные параметры ОУ
1.3.1. Интегральный ОУ имеет следующие основные параметры:
1. Коэффициент усиления напряжения Kуи - отношение изменения выходного напряжения. В общем случае, коэффициент усиления ОУ, не охваченного обратной связью, равен произведению Kуи всех его каскадов. В настоящее время Kу некоторых усилителей по постоянному току превышает 3*106. Однако его значение уменьшается с ростом частоты входного сигнала, при этом суммарная амплитудно-частотная характеристика (АЧХ) имеет столько изломов, сколько усилительных каскадов в ОУ. Каждый каскад на высоких частотах вносит фазовый сдвиг, который влияет на устойчивую работу ОУ, охваченного отрицательной обратной связью (ООС). Устойчивой работы усилительных каскадов ОУ добиваются введением частотной коррекции - внешних нагрузочных RC-цепей. Для стабилизации двухкаскадного усилителя обычно требуется одна цепь, трехкаскадного - две. Многие ОУ последних выпусков не требуют внешних цепей коррекции, так как в их схему уже введены необходимые элементы.
2. Частота единичного усиления f1 - значение частоты входного сигнала, при котором значение коэффициента усиления напряжения ОУ падает до единицы. Этот параметр определяет максимально реализуемую полосу усиления ОУ. Выходное напряжение на этой частоте ниже, чем для постоянного тока примерно в 30 раз.
3. Максимальное выходное напряжение Uвых.макс - максимальное значение выходного напряжения, при котором искажения не превышают заданного значения. В отечественной практике этот параметр измеряется +Uвых.макс относительно нулевого потенциала как в положительную, так и в отрицательную сторону. В зарубежных каталогах приводят значение максимального диапазона выходных напряжений, который равен 2Uвых. Выходное напряжение измеряется при определенном сопротивлении нагрузки. При уменьшении сопротивления нагрузки величина Uвых.макс уменьшается.
Рекомендуем скачать другие рефераты по теме: тест класс, изложение по русскому языку 6.
Категории:
1 2 3 | Следующая страница реферата