Происхождение и динамика ударного метаморфизма
| Категория реферата: Рефераты по науке и технике
| Теги реферата: allbest, доклад
| Добавил(а) на сайт: Унковский.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
Звезды второй ветви – «население I», медленно образуются путем аккреции межзвездной газопылевой смеси – продуктов взрыва сверхновых, концентрирующихся к плоскости галактического диска. Орбиты этих звезд являются почти круговыми вокруг центра Галактики и лежат в плоскости диска. Это определяется тем, что их эволюция проходила триллионы лет, а значит, они потеряли за это время компоненту скорости движения относительно межзвездного вещества диска, испытывая хотя и малое, но длительное торможение. Звезды этого населения отличаются высокой металличностью, так как такова металличность аккрецируемого ими материала.
Этот материал есть межзвездные пыль и газ, – продукты взрывов сверхновых, плюс водородно-гелиевая смесь, попавшая в галактику извне.
Плотность этого материала различается на порядки в разных местах диска. Связано это вот с чем.
В обычных условиях в открытом космосе невозможна близкая к стационарной высокая плотность газа. Связано это с тем, что при возникновении частых столкновений молекул начинают работать газовые законы, расширяющие данный объем газа в открытый космос и тем самым рассеивающие его.
Однако в динамике дисков спиральных галактик происходит нечто иное.
Как установлено доплеровскими наблюдениями, типичная скорость вещества дисков галактик составляет 130...270 км/с. При попадании даже малого островка газа (флюктуации) извне, имеющего скорость, близкую к нулевой или просто отличающуюся от скорости диска на 130...270 км/с, образуется коническая ударная волна. Во фронте этой волны возникают давление и плотность газа, на несколько порядков превышающие эти величины для космического пространства в диске. Так как склон ударной волны, обращенный к центру галактики, является препятствием для орбитально набегающих масс межзвездного вещества, то условия фронта ударной волны соблюдаются далее, и этот склон растет спиралью до самого балджа галактики, пока соблюдаются условия для возникновения ударной волны.
Этот склон есть не что иное, как фронт одного из галактических рукавов. Как установлено автором в [5], в нашей галактике соблюдаются условия для трех таких «стоячих» ударных волн – рукавов: Perseus, Scutum, Sagittarius. Солнце и другие звезды диска каждые 73±3 миллиона лет пересекают галактические рукава, претерпевая аккрецию катастрофического характера. Вещество в них имеет плотность на несколько порядков выше плотности вещества в межрукавном пространстве. На планеты обрушивается шквал комет, а звезды обзаводятся большой газовой короной и увеличивают светимость.
Поэтому именно в рукавах галактики происходят основные процессы аккреции вещества, то есть процессы образования новых небесных тел и наращивания массы уже имеющихся, проходящих эти рукава на большой орбитальной скорости.
При этом, внутри рукава образуются сначала микрокометы – своеобразный космический снег. Роль агрегирующих сил на начальном этапе играют силы Ван-дер-Ваальса, силы поверхностного натяжения, осмоса, электрические силы, а не силы гравитации.
Эти микрокометы имеют нулевую скорость относительно вещества рукава (5...7 км/с орбитальной скорости), поэтому постоянно находятся внутри рукава и быстро, по астрономическим меркам слипаются, образуя космические снеговики – кометные тела.
Часть кометных тел убывает из периферии рукава в межрукавное пространство, где постепенно приобретает скорость, характерную для межрукавного вещества: звезд – пыли и газа, то есть около 200 км/с.
Теперь о дозвездной стадии развития звезд «населения I». Словосочетание «дозвездная стадия» применяется автором не в том мифическом эволюционистском смысле, что это время до возникновения звезд во Вселенной. Реально, процесс образования звезд «населения I», к которому относится и Солнце, путем аккреции шел многие поколения звезд, идет сейчас, и будет идти в далеком будущем. Поэтому «дозвездная стадия» означает время, когда данная конкретная звезда по массе еще не доросла до излучающей звезды, но пребывает микрокометой, кометой, планетой юпитерианского типа.
Продукты взрывов сверхновых, составляющих источник аккреции вещества галактического диска, состоят из того же вещества, из которого состояли взорвавшиеся звезды и их планеты. Они имеют большую «металличность», то есть большой процент элементов, тяжелее гелия. Этот процент зависит не столько от возраста погибшей во взрыве звезды, сколько от возраста галактики, так как накопление тяжелых элементов продолжается в течение многих поколений звезд (металличность галактик плавно растет с их возрастом).
В нашей галактике этот процент составляет от 1 до 4%. Именно эта часть вещества диска составляет основу космической пыли и микрокомет, агрегирующих во всё большие и большие частицы благодаря сцеплению пылинок.
В условиях невесомости и низких температур такие вещества как углерод, кремний, вода (лед) обладают свойством соединяться в дендритные структуры, то есть нити древовидной структуры. Эти структуры являются идеальным абсорбентом молекул газов, рассеянных в космосе.
Таким образом, практически всё межзвездное вещество собирается этими снежными комочками, которые порой залетают и в атмосферу Земли, наблюдаемые в ней как метеороиды. Их распределение по массам m аналогично функции масс Солпитера, на которой мы остановимся ниже, то есть приближается к c/m2 (чем мельче метеороиды, тем их больше)
Начальный этап жизни кометы – это этап свободного полета в галактике по гиперболическим траекториям мимо звезд и иных небесных тел. Под действием сил сцепления, упомянутых выше, а затем и гравитации, микрокометы растут до комет и планет юпитерианского типа. Все эти тела имеют практически один и тот же состав, различающийся только долей летучих веществ, в особенности водорода и гелия, которые трудно удержать телу малой гравитации.
Измерения плотности непериодических («новых», гиперболических) комет и комет с большим периодом показывает, что их плотность составляет 0,1...0,8 кг/дм3, то есть они состоят в основном из воды и абсорбированных газов.
Жизнь кометы очень длительна. Чтобы вырасти до блуждающей планеты юпитерианского типа или коричневого карлика ей необходимы многие миллиарды лет. Поэтому судьбы комет очень сложны и разнообразны.
По мере роста кометы и ее эпизодического прохождения по гиперболической траектории вблизи звезд и сверхновых, она многократно теряет летучие вещества, и ее тугоплавкий керн всё больше агрегируется в породу, близкую по составу планетным базальтам. Это естественно, так как все планеты – это результат аккреции межзвездного вещества.
Тугоплавкий керн молодых комет представляет собой лишь пыль и подобие реголитового песка, рассеянного в кометных льдах. Его мы можем наблюдать в составе импактной почвы Луны. Под действием сил космического метаморфизма – времени, давления и излучения звезд при близком пролете, он приобретает вид спекшегося реголита или хондрита. Часто это ноздреватые породы подобные пемзам, остатки которых находят, как на Луне, так и на Земле вблизи импактных кратеров.
Для еще более крупных комет, приближающихся по размерам к планетам, тугоплавкий керн метаморфизуется в скальное базальтовое ядро.
Есть еще один тип комет, затравку которых образуют скальные обломки экзопланет – спутников звезд, ставших сверхновыми. Эти планеты были разрушены взрывом своего солнца.
Кроме того, затравками комет могут быть также обломки твердых ядер самих звезд. Последнее непривычно уху современного астрофизика, воспитанного на мифах рр-синтеза и температур в миллионы градусов в центрах звезд, однако это видится автору ближе к истине.
Различие в происхождении комет показывается модальностью распределения плотности астероидов – малых небесных тел Солнечной системы, которые являются старыми кометами, потерявшими летучую часть своего вещества вследствие облучения Солнцем и свой былой эксцентриситет.
Рекомендуем скачать другие рефераты по теме: изложение 5 класс, информационные рефераты.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата